04 Direct material direct labor factory overhead SG amp amp A Perfect Pad manufactures floor mats for trailers that are used to transport horses The
Direct material direct labor factory overhead SG amp amp A Perfect Pad manufactures floor mats for trailers that are
Direct material direct labor factory overhead SG amp amp A Perfect Pad manufactures floor
factory overhead SG amp amp A Perfect Pad manufactures floor mats for trailers that are used to transport horses The
Direct material direct labor factory overhead SG amp amp A Perfect Pad
manufactures floor mats for trailers that are used to transport horses The
Direct material direct labor factory overhead SG amp amp
Direct material direct labor
04 Direct material/direct labor/factory overhead/SG&A Perfect Pad manufactures floor mats for trailers that are used to transport horses. The...

Category: General
Words: 825
Amount: $25
Writer: 1

Paper instructions

Please help, I am so lost. If you can explain that would be great too! ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:66px;top:90px;} #t2_1{left:66px;top:103px;} #t3_1{left:66px;top:115px;} #t4_1{left:66px;top:128px;} #t5_1{left:66px;top:153px;} #t6_1{left:136px;top:183px;} #t7_1{left:413px;top:183px;} #t8_1{left:136px;top:202px;} #t9_1{left:424px;top:202px;} #ta_1{left:136px;top:221px;} #tb_1{left:429px;top:221px;} #tc_1{left:136px;top:240px;} #td_1{left:429px;top:240px;} #te_1{left:136px;top:258px;} #tf_1{left:424px;top:258px;} #tg_1{left:136px;top:277px;} #th_1{left:429px;top:277px;} #ti_1{left:136px;top:296px;} #tj_1{left:424px;top:296px;} #tk_1{left:136px;top:315px;} #tl_1{left:429px;top:315px;} #tm_1{left:136px;top:334px;} #tn_1{left:429px;top:334px;} #to_1{left:136px;top:353px;} #tp_1{left:424px;top:353px;} #tq_1{left:66px;top:392px;} #tr_1{left:66px;top:404px;} #ts_1{left:66px;top:417px;} #tt_1{left:75px;top:52px;} #tu_1{left:561px;top:52px;} .s3_1{ FONT-SIZE: 41px; FONT-FAMILY: PZEVTR-MyriadPro-SemiboldIt1; color: rgb(0,0,0); } .s1_1{ FONT-SIZE: 41px; FONT-FAMILY: PZEVTR-MyriadPro-Regular1; color: rgb(0,0,0); } .s2_1{ FONT-SIZE: 41px; FONT-FAMILY: PZEVTR-MyriadPro-It1; color: rgb(0,0,0); } @font-face { font-family: PZEVTR-MyriadPro-Regular1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRk9UVE8AABtEAAkAAAAAISwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABDRkYgAAAA4AAAFzQAABnVwXqqqU9TLzIAABgUAAAAKQAAAGAKqgkeY21hcAAAGEAAAADYAAACBt6k6z5oZWFkAAAZGAAAADAAAAA2+OC3umhoZWEAABlIAAAAHwAAACQGFwFvaG10eAAAGWgAAACSAAABQJpLAABtYXhwAAAZ/AAAAAYAAAAGAFBQAG5hbWUAABoEAAABLAAAAosDjTTWcG9zdAAAGzAAAAATAAAAIP+GADZ4nH1Yd1gU19pnXWcWolkj4yDu3MwQNSo3xgIoKmKLBQQFQVAwSJcqvYOw2KgLVpAmSFEsgBSBKAgRsdCrIIo0RVSSmGuSd7gHn3xnMbn3++N7vgee2Wnn9/b3954RKEyfpiAQCOYZW24z32vyza5gHxdbB2Mfz29NHJ383W195A85nhPwqtN5tZk0WokS/v3vfxsS0DsLYHbtP+ZlKSuQAsF0pZmzxn4/ZO1+yPqQtcvU/6HvPL0wmpOzn9rKtWs1lsqPWlNH7aVqGitWrJg6aqltdvC0c1QzDfb1czzsq6bvYe/p4+XpY+vn6LBMbbO7u9oUhK+aj6Ovo0+A/OYnHdVcfNUcXfycHX3UbPFDJxe83sfRQc3Px9bB8bCtj5uap/zJ/7o89P+IUnPxUMNYamYeLvIrUz9801fN1sNhOUbxnJJi7+nv4efj4ui7bPl2073BXo5qa9QcHA8pKAgUBNMUiGkKSgKFz8UKagoK82cpaIoUtsxTcFYQRAkVjLGHFXYpGCtEKZQIOMH9afbTkqY9mvZm2kfhl0JtYaQwV/hm+u7pZ6a/Iw4SUnIaGUiWixaJvEWvFL9RPKp4TbFB6Wul3UoOSueVGpWGPjP/LP+zjzOMZpTOnDFz0Uyrmcmfk59bfH5GTIgDxBWzFs0KmXXnC4MvTn1RP5uZbT7bZfaQsrqym/IT6jtKRo3M+XqO15xrNE070TX07ypzVaxUXs5dNDdlb1w1P14twMeF1cK46Xz0hPFkNAkJqJ5GG+AsAWMkUkO1NMgvJs+IJsmDU+ewAeFrkq+h5WdIfiVG78ToqRS+4OsDlevgs8X9VBuogzmdwvsR35Apk34ENViAbOmi7MuFRX55Ti4+3k7OOV6FnBh58HvguODBnwrbpQp97cK7E5vpNHSc+JFMh+PEY5V0fF47dS5ObeXDWpS7h+obTB83DVO/QcEq+oPoX+n3uvskL/fVLLzFahUdyquRlOb/0NtY5h+RxeY2E9S4R7pdmpFMcXzXItHyMGPDNRKtBqtf7dnuwyUueyUmB+y2mu67mOPE+uoR1G+FPg+D62MVF4nEEHm81ikA8mpzasG9VvlqO6xvB8U20G2jiqRgNKFOr9q6BalwaG58+87nzEBnK3wJXxi1r+CizelH2frrV3nv2rPXveGFjOvPb7rHUhHSO5N/0rzyhBZhSk4qf9Qi+B384imUuRzGRCpTQC/kQBx+G74wbl/B/gUmf0EOaObW8CJejtV/FWOKq6XNLgETxEPlawPHnoF2L+XO/6xiX+5c7FRc/SB/ION3RR0yfHXATvfvbe4YdJs0KyaI/qgtq+uQDO+s00bTjbXXHsiyLLRmo0VU2QbbvYbLJYt6NGFud1P2j/Us5ZfnmRF0MUiRKkMx9+h1Jg96O+6WF2VzT1Y9WVtqrejsZum9h6FuXORb6HvZVnYm1k47HDiPIv+bdyQ1+T/UsWKUgz6fqBM0dgth38RO2lBbD82JRRaKaF8rmtOwhm0jt/6yF+bAdgno14JK10//WQKLuoQj6HO6cbAFKNgvAQs9mGPQz+4gO5f8iOagHRKktxepbF2CV7xHs0AmSAMNYR9Soq/crgBh9qB6pKp0i5eav7GiGMXD0SbBVYgTXoU6eifENYnwIikoC2pghhCEUvpm9uWim755zs4+3oecPmWl88TmQEEs/CJstqfhxoQLsYNE1z+6EGJpK3+jVVA0AhkjQkjFaYBUv0UzkQeH3GRDaAZQDCzsBzF4g70uiNGX3Mkd9GjZfKSF1tnMX6mz7x3owra6N72cOCuAb+qPC1QG6SB1E6QqgxPsJpJqQ/M3pusB8YiQkeK4Lj65SwD8iJC3UelClTJRzR0C55nq8DjMlIwZv0Nqmww8HQ+yV3YRuVerrj5gxq/v1udi1Tdpo3VIY7ueqplILO2Ac83g0KEMwy/1R6mxWzfogOuNfl0MrHg++mF050OdNE4mot4/yy+93yLp29OD5mzT9/FxYbMNiMwr1dk1zPMbVvs2rHM14Cz1q0hqbLDfYUU8Zxbv/B0imN17ctN85MbAtjboHBSkvgSXF0J+oQpsG21bwS9ZKkLlk5rEHriHtomQC8TSMhFognfG1bQrmcXzEsgYl1gXFwk6PKVocStodwtg4qWQ3zbB0qiRtEVNREJOfuJNBlTqjLTjOa2tZmuMzTPTvFh/PSLw2sPADga+ev8WqH7buv35XI69RZIF43skJiaMywUdAuJJHDOob4YVPYKCYcjG0FoTS+hQ/9gob25t5HeuZuaKBgZWi9AcCdIdRQrAAfMcpgEO5boXSPSdmYudOxtNpv7R9R7Y7NzE7PiMWEW0dPIKvdyy748YLi3xwunz7O2cqhu1zPNa02XL9htunApud5fgPr9MeB/bsQU6YkSocLKTGCWhiH9J1GNrG/lbDco3X+18Ab4DO19SL+GslIYvxnuA6LO4v+46lyCiep8VX35wT/LcsA8pI1Jr20LTa6adLmx8NEG91HGx3LNWsrR/HfyDlTXSayzqmxO4x2XVPZfYEZ97juslevst17NUbzx/i+67ZrbP2MbeNIjblGlZ2CSpK73TxYojn8C6FqhqEZQNQ8pL4btIOiv2Svz1U+1n265WVyk2Pr7zCyyQwLq1oIDmoXkaSAHNQsInmqDUVJNXUcQmkBEb3E1sHA45HwjYf/xwtH9MkEwRtPh8+nXZaiQ8Eh158hjn4GflYcxstLz//HVt8xNuqvJmQxDM/qv64K28/Aq5m7F+ec6MvAKneAH9Pv3/ui1G6ng5H9WpjOMzQ/1Phd1ShT8VtKQKr6he8ARTOjYv+m5aRUXNvDv3i6taJT37OpDI3CTU15XNMSQu5pYmFzENsddd9ksO+jgcNGctjIKNT5vJvFWpsZvo4JQmfzeCT/Lu48R2boX2XlyoufwjqpdfD850J3ImMDuGTKwm5pMo+ONq4hXZDs5ERivdDPsIauxCWVLZ+VJFGXne4bx9qnUzMlcVh59ohZRm8G1R7hkG/xG919RvPTI6Kv+HqIcMTOvJLL/NFdzIrqiX/LKp1iCNxSXJd+SV32+S1AaUOuexBbamqVrMbqMTxxy5YWM6ISU7oZQZeei+fqfZgeXcelJ/eidJ/fa2z3G5+hrXle4+8QkhnDg3sov/oUtQ9FrI543SIc5mUnMGrVn6O6yFbb+9B4262xGhN7isDiLZzzxDm0GOaAH+c0LesADNBJP+xrS065wYhCfa+fI2Qc8wP2NUiJU+WVET/ZiBuR8KGhq4hscFr2CaBATOT43usfeMNfLRbGa74Ylj5tywAX0quyCxkgHDV4uQZiyHdi5agHa7uMUn+rNiw7guiOoEly4MLOR1eVUapYILXO2aVPi4mp+F+x1EQSop3oFjUN8JflPv9agMQz2c7URnwQ/yu9CfpHj0eCd4tsMZuZ38zEEhPwR/0MhnG3yJrMjIQIdjJgxaufA9bATdP36FNa2V4aFFcptTPHan6zIoALFoMbKK5eYXraw3ZQ2bB7x/ZUZ7s1NKOPE4Ft3WA4WBWDT0jQh7JlbTH1cPQxv0obaRidWaqBD1QSEmlLasgInVgVMafnpnYjW+u0vazUOgAFyHheAKIZgsrJx1PbxPnwlmw7cSRy+VHL/OgOLIPdjB8fu0ROLw/6JgO8+Tjd3ggwaIf5EojVeFaCghkAKJ7NDpEP9g32DvedHwVIsUr8E88dNfq/gZXaiM/wnfBVkiKC0O4AeGlesntlJeE+oqg6QtTlkkJDFj9RHUzcOrfTeH7FCMJkPa/bo9cbeDPlX8lPL6Hqf0CzIDbp1+fwoI2cA8GXlR57LW9aWKmKoEqJtoJnEBPisYuzKQ3YebeKz2aUSc+lZR/K84IJcF8I1/4Hrp6Ye3/dT3oKECZSLKHabHPD85yCbEF2yp3HB70zxwRW8J7MO1qJCk0ufL1p5dycbEurU5dFj0zUPu8IZY+nE1NkMi7eDvdgiKxvjvXgvhVzwfIj3cj9SQK7KB2YiF7bAJvoJZEAbfYwL+ChlyUVtp+LodvyJB3+oiCgf4S12gYSEs6YR5sJAT++G4prdDvjyn4cQnb2eTJzNzYvOYwSe5VT9wBYUZdx5JHvpXHbrOFtkbZq5itu09cdyWGzakE1PzE4qZdw02GssM9s/38JWdCuLEIRixshnOtPwvxMp+si+6yDlz2UXt1D1JQYqvyCN5oU3+b0Lb3e/sy8DDWEdO3YOXkpqgH1yussW2RunLGCPDk0etueHddGLK1cRbzOvYBkctyQbj/ctYDVK8K7KTv9MpqBuBwy+FmMZ9izqCmhjQ7H314ec99xBZwS0rsrvWIPmh8N7rR5WBEZfYnA4i/bBF2nYGzdXSnb+01QSmOXCjzkVOhpId+77XMDLJzHFgxXswW41j2rXBI42Nygg/Dnbdk1GbwZYUv8bO/3eg4MkIdI8In+DMnvxKhBw/rAcWFoFgEOxZ/kvNyQUipG6gv3ilXiN8w/ILROKEuFfb5ZmsnMj/SHlBlwqcwIm3jEQkGpLnnabn6iBdxRgyuM+n32N0PgyqfkuCF046MVTEvdcJ4Fv/hRModaKR2g9XVd7BB4Jyzh1ObU5uwT313I4U/axVg+iDKmZTU4yrQWqgMYK6EKAdtOnIZgwb2RH8LOjZWniruoJcicb8tAJ0pHrzYsiIpuCBwAEdeKO6nISNcnFpnwoul88Q8uUq6BD8DLbwnFhMLkcaPjYh7kH286LJ4KKgAp8KDdBQXUSCJRrCBfiG+IV8DksKH1wsuliCqyPL4dKhQpMhpK4qPvIJEgKwN1tUoFQEAfxcYgn5T7Tbe7+fdZA1ViTgdmCZ992lsFt1CQkuk6oEKhGJt0ibXAMg7hGIm5QLR8B2kArj16qcuBFTdgsPyKJxp/doye49Id72bOYe4lLB7ZRK5uek7+y5SBEyil9ggJQkVNW26u0/tdUUFF/G7EyFndlNhIM2TVUdjYmMPsraHbG3N2QOOl6+/wYE6e9iOHGKtN0xgNdtB7dA5a5hKBqhwuBrFaoq8RmRQBoU1Xm1M6AAgiHYzMHi+NW/oJmMrqmzmTsXA/e1JvuxCJsYyxhXdhQK6JSEZNl5tiWjruwh86Z6zT85qgoJ925abrD/1qMQNuZ8TFKSRKwW2c4rtAuK8RS2eICW+riGWzDffNcG098/7AfhnRvSiCwus5VI9rW6sI9BGl/jmUMdLXm7BBY13U1LzubE56QdDgH8hja5xsUvIX+EquIXT1jS6FaMqMTfonAzgz5bvAStiufQ4ldLQKnvQdmPl1kZ1jRRm+gjo2/EVpVL+H6R5mQifSQ2IjqCpar0Q80cjJmlB57/9MePz0ab71iZXuASpPFhUonYLLIV1jfAggZB8QAkYW6xgwA6/pwsJUPy0hY4pIG+WoVEaBFa9FId1Htr01KusWENxBFXR6kho7mxCmbEcPEN9KMzJf0vmZ9ztExj8QyDk45f1QLrOgT9mBd0VfhVoNSClPJE3Rebn+RmnDxxgU1uJc6EeJ1xZ+ysw91cOTuHsF07JH479FonV4nEicixDea3wESbdMoJucPUc34lH0RT41FbiBiyNMCqApO5UG0ZWoMkQ1/DzCc1RZWXOZkZicT63680ssjIdJOPz94ljUfqmUetKRW3udu3LrWCUAIFIur5A1mJrJBdga7RYTEhJ8NY0yBLFzPsoL63HDUO0x92DDSW2+5PYxMj4sPDJOI4bM+6LhwRQdcISEeEXSojUEmmx184lczeSassvc+8yNfX5dC1EUwEoLOgdKere2SYN+sV5u9/xEcxBu5pkmLUjVGCAn8FgfJjEKiPUGOwSoUP0pwMwnuTiglt2s3P1/3wJd9rhZdyrsZy1wJyXPHmrwm74kDAhP7Uuq6pdX5OyJG+3ZhWUsKVV6Q+eiPhDTQn1fEOFykedfT1ZAP8nKX20YpUEGyZqKNdMapHls+Nwqzc/ClUN1a8akoTiMX24Pho4ezS+mg5DDvJymrQQWHEHyTeyBSDERwgviLRfKRzJCQkICIE17UYdeLqt5Q7Qu6FCUtsGFzHcDqdOFRdQ3B4CNyHqOddKkPYQ6my1FMX2IqU0op7TEuB6QYOlQ9BjSgtIS0xmS1PLblZzXQUmC7j0OUhKBbB+qW3DKzcIvw92MCwoIAwL9zo7gdYlOozOgdtrLy4aJKqinpKbCAT7OPtLP6OilysPChUrzwqFXKZiUlsVWplWT2Oyk4clesjcEsE6xaU6umYHrTyZWNIqvLkM0L3b5wT0mb+s2ZcsnD7lRCu8cdoJPlqKVqNvn3/DcwFJfjiKeyAJd++RxwXo09/KFuwFgkM12uv2v3s99eV7z7gLoO2BYBRGy9sl/7dZsa7kCU9DGky8kB+nWcjA+TvQ7AFFmv+jJTWmzgbO3FYjedRL4j1pMxKZrFLMmxFJydcSEhiqfHm9Lryh8zY3TX/REKzjcsMzW89CuVikmKSL0jEZ6dEtfPT2qV/94dxfjGWNcL/gAGr42/Jytg1JDUeLS+U274WNzcxXyMlHaSPFr9WB+Lpj8V38jgZCeLp4dEhURHs7kBLZxPmn1YD70Bwr3e0+baV2VRzOBIhEaMg7OIVL6SBV+RmUY+6MOcnYQ+nyJLZ5uSK24+Z5HOxMec46sILEfVIdux4fCRjbG6305+LIqn86LfyWB2MtzTBSJqRTXIn1w6AZFBYkk0HFlSF1zIgan442GlzS/s6Z5jjkVEqKcq/WlNZGBpxkb3USKR52aRYMgsMDXT3lB0YdueafHP9bCX2h90MrK0y0r1xdfhFdgK0CMaGhGP8OI0UN+k9Qekik3M2ud6sb9aN8DKm4PKpM+lcVDMRLQ2J9mMsQwoecpACyi1IGTiROEraZSevBeX2EQgboSp5H9xlNFE1GRodejKcdQi1szNmdDwfv+YgSxMVidCGUdueobt3S7LlLTfo1HriKRldHFtRLRFvjhvRm4K6wB+kvC5gHDCcDCIGSDDhg4jl5LcoF08GodZH7KX2eCKNLA0vDa1YCrmqYtCPG4AHb/BAkDFhSt3MkC9dhJc+I59CCEG1pdekVifX48Eg2STlQLpZNwpVfUbCCoyqRW5HUaEm4fuPWWIal1YduRtcvwlOqm4m16O40H2h+6Ty+0erw6uP/GgAsari5VOVLzjLGwnT5GLWoEi0CcUR43h7J8jIT89Ly8dkn+6R5nXRswMJVH8h0QZIwLupcGIpuWNhqHeoT6gHhgy9HJYbfHn7B1WxthzvHH9AeE6Ot2PShEiUyo6flJyMPh51lA08eNjFN8jb3+OI//FLm1UvJZanlhc/rCkfbIB1oAo/qS4jv0E3I5wjDx31wO3lWH5EsfT6V1CiKkZUXDu86xBk8F8KM1T4L9tRkYy8lJuZk3kZ3KFANf4eMUlshdQY0t870C/AG3miYlXxpFD+tRV78tP3VspG/rmVyvrvB1ex2ydu0m3F3ATmf9MT0YKIHNHTqy2vC7JPHktlP84ZntgmynQyTzZl9CxC3By5g/Z+RnqSgL8YCi58glnZZtThnqmMoWxGwGyEap0wm9hOUz0Z3hYXrBn0j41r0BzOG9lcFFGvb52tyMlj01Izz19hsrOPHkvlqNacJoJ6fS7YJdmVMbMN9vDkbO1CjXdLgqfEDGPFbCZXjeAfM/lPECrMEVE9vVeaxkqLIo5cYv82Zopo/2uMuXxpECrIEfVebhorLw4Py2JzW4gMH/OUg1inTVM6/WXIlU8IK9qNOuRWWI9gprWRgyh+IuzM5u689JMnUtgkOWF7n3Fj7P8i7FA5YSPrLBE13nPxQVvmxROY1jOaiLNh3uc8GTP7EE9PztEx1HiHJPQ/1ljLRUqTIOo0RCTB8qQLyTlJJHJMqjydd5qfcRo2nhaxWXbWM5XiZs5o+WxkxkjizM/583P4Gvp/AGAguLp4nGNgZnzLOIGBlYGBIQ0IGdBpRjhgwAYcQATzCzC5g+EXpgIAiEMG1gAAAHicY2BgYGaAYBkGRiAJIpjBrD4GFoYiIC3CIAAUYWFQYtBksGKwZwhgiGSo+s38/+///0BZBQYVBh2gqCNDEEPib0aQ6P+HDAz/7/6/+f/G/+v/LzDAzBNiQAAIm4WBlYGNwZuBnYGDwY/Bh8F3AGxkYGRjAFF4ASMT0DmsbN7sHAwMnFzcPLx8/AKCQsIiomLiIGkJBkkpaRlZOXkFRSVlFVU1dQ0GTS1tHV09fQOoAYZGxiamZuYWllbWNrZ29g6OTs4urm7uHp5eBGymFPAQpQoAGJBBe3icY2BkYGAA4o0b1u+K57f5ysDAwgACpxl3wen/yf/ZWNKYdwC57AxMIFEAQMELEXicY2BkYGDe8Z8NSDr9T/53jeknA1AEBQQAAJdyBokAeJxjYmRgYLjCwMAEpBkDITQ6ZjgPlDOG0uHY1eDSB2anIInPAprxBoifI6l7j2Az3mBgYFYBsicB8UYgFoGKvwXij9jtYXwEpC2B9AEgbQKkvwIxyAx9INYGmv8Kqu4qkA20m9kJIs6kCtHHBPQbozsQ9wCxN5CvDqQfAukHQBrk5+tI9nED9etDaBAfANHoGM4AAAAAUAAAUAAAeJyVj71uwjAYRa/5k9qqHdtu9dgFFFi6VJ0AIUSQFaEMbBYJIRKxkSEDUvc+Qsc+QftGfZdeiNWNIZZsne/46loGcIcfCFTribtigUdOFTfQxovnJp7x6rnFTOK5jRu8e+7QfzApWlec3vDlWSDAr+cGrsWt5yaUePDcQiAyz23ci0/PHfrvuZUruzu6PNscZG7W1hX6kFsj17Y0SU8tR/Ei6oYM6EQ5243SrNxqF9lCm6lKE72VajgeTBbhTF4KX/Jx6vanp/q94FIEc1hIrHjucIRDjgwbHOhyGKzpHQpompxs6E+uJCXoQWGJEWIsEKGL0Ddo3imSpYuQsrHEltZxsuc2gykTKXOaN5I8xBgDTNgUYnY29Zrr5mNODvv/X/X5m6Buyx+Y0HpNeJxjYGYAg//NDGYMWAAAKJgBvAA=) format("woff"); } @font-face { font-family: PZEVTR-MyriadPro-It1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRk9UVE8AABC4AAkAAAAAFQAAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABDRkYgAAAA4AAADQYAAA5JRYwJcE9TLzIAAA3oAAAAKQAAAGAKqgiSY21hcAAADhQAAADDAAACQrfzwPFoZWFkAAAO2AAAADAAAAA2+KC3u2hoZWEAAA8IAAAAHgAAACQFUQDuaG10eAAADygAAABLAAAAoDcXAABtYXhwAAAPdAAAAAYAAAAGAChQAG5hbWUAAA98AAABJwAAAk/AYAtecG9zdAAAEKQAAAATAAAAIP+GADZ4nH1WeVhTVxZ/z3AfUWlaiQ8xr83LuFRtrYpVkakiuFFQBEUUUZElASKrAQNYhLBHQBYdWWQVARUUIlZxAwUVUcIi1qVSFVrbOl1s7bQ9j16cmRvszDd/zZcv93vn3u/8zjm/e5ZLU2ZjKJqmJ7p7r9q0ccP7rnEatZ/SXRPxgXO0aX+K8A4tWJvpLMYIcgsWu+KcP+7/4YrA+Cb8MeH225JxlpQZTZuZD/4YuEMduCN0RUQkQQgKjlbY2NnNn21aF4yutrMV8+fNmze6LlA4KiP8VQqPuKhoVViUwjk8IEITGaHxi1Yp5ygcQ0MVoxBRCo0qSqXRmjZf+6VQRylU6uhglUbhRw6D1ERfo1IqojV+SlWYnyZEEWE6+R8x8P+YUqjDFQRL4RmuNkke0WQzSuEXrpxLUCJGrQRE7A6P1qhVUXPmrvbYGBepUixWKFWBFEWTH2VOURKKeouiplDUNJqaQVNzKMqGohaMoZaLqbWI8kCUN01n0NRMQjLlSrlTv9IW9Lv0TvrimIljHMecEMlFu0S3RT+ZLTIrMQPkgKqZMYwHc9OcNf/YfJ/5UfFUcYz4ytjpYyPGXhs3aVzouNrx0vHK8UfG/2bhvjurRfihhSbrtBZRlpmgH3Yf0TOQg2+w2B4OInjOYAW+yoJJGDlgPsL4jH6DPSYyI1xhTV/YJEnwc0mPzugJZvO0w0yHZenTiw9g4UOpvXDCSuqz80ykQdNwq+vcoOF38VImfFGIs79XcIv3vcDb4hxzELddvzUgu7u902aqg+2MbLl/kbLKV643Xxxgu2KKTFo+u9sRxn5280jrNbnUviSqKK40RiwtxzvbWHvfVuPjvkvNtXyLbYdd3TZxkNonypP7QehjL5cFKtds22Gn5LUNugaDrOfs5StyCQ6BZCPdAHmiS3CNTXBBkMoUGon7XsOOMbSnsFNUFMAKM4bVyIkZefeVGkkuVGpB3Q13H9CRgkEkTAc1W4vVaJCZM7wIzWLwy1eL0FfM76BGJ7rZn8Gr4tPSs2VnJu9ncgLyvHODa/Bma8nJpH7h8l368lciYc/XbGygR5IXh9/b+ALeeHnmu9sd/OUr/bV3uJuXEuKr+doeVBy3qdyBm7kwxH01P8feC7+BpTLs8IsC7B90Hi49LZfAhIxeobmXFs4/E9XnsunNnfoODtgfjxk/57+8dxneAIksczDyZtBp8Y0ti+ox4tw3pCd78f3r2Lxqw/4THCzpmI8tZofMc3Pl13ssDVFwmpDs3DBesoFEe6MfYvrpOsJFndUT5gbcQJDMFPcjnMI0QwyCQqaICN8xkp9T+yGyFw6RyJ6JhEH4lcXhTIITgncYFd6OdBpVSgCJ02UIrL49/T2J8+q1z44PcJ0XEvc08LV3UGGMR/liDlPvBa5dwS9Y6oPHYjPZx6XLWzfIN7Tei/yOe3S3oqSJl0BBLpjP0grPHlsWDSdJI4cXWw0R8jHFYNXIZCQ1hHuEu2m3iPVMZktKZ+r1TcIk678w0ki8gtzN58y3AlXSVfny8C1yKbmrDyw9tFQsNbTgf6EuBrYJ5oY+w0Bd7+RcJsElfmbyGrE0cusIhSTxhImyXqgjLK9+Sph4zLRCFdJXVu2r5h48qGi+wjcbDLcfyK7uaQo5IW9UuZa4cBs3pSWr+D43Nvdwdc5J7uH1kI9mL1uJmajY/XlRvMTjdRr8OAQzhkSFjWzUse7dvRy8/+03MPbJ9quLm/lVTeq6dll7S/sTeVv22ZjKxBM91iVR3hUuHH5r6lJssfyS59B2/o7yeOAWmd0qn2UeXmXVQXLJ1kqt8OIubRR0IphJ7gwY4QUCb6b4LhrRMHtXINjCSF7o+oU/Yuh7T0Qwf3gR6zDyDkoL1e8Ml2F+yA1EMPWnL2B7k/yhMAMtZuxHpiP8foST61zOYUvz0LGc43nH+AfCVCTJ0vUGaQXH7qwYy7ohiH8o3SbYW+1rOzBU8vQy5FlLTxbs9Dq4ncNB+C28Gi+Z2+Y02Nfd+NNVfj8jDU3bkr49XFYDx1npScxG2dms5tbEXm3jQZb9EibBBO5YWYa+kJfk6IyCuA9CYugLg1A/JIIPh73ZKSNlKCM6IzxaZtMVPAibfoe1MHMo4Ku/uLiqXXzl+5gu6EEfjISywBy9d+8u113j4aZYhmfhCZt31VzgM6tzKnJLxJKZSb2CqI+43zAk7YPfBtlEjSrem1vi3/o5MI/gLbBsrE1OLuelhqPdSNp3MN6/yIfDy7EEz8Z20zptYYKxpbSw2uSkiQmHHuKmZf2Q9LzgS5z0xfHokFZ9IJTDy/BEPB87zGy1/3tf5+m+ZhMDsQnvowdMzsWD1w61/Ca0WWOHkRBWeh7TWvvla7iVMZ03gP0a3gRxw7FkXSkvWZ3UDTZd8IGRPvl3iB8QCfTX7CdhvnEbuC3KI+dieV2N/nxupRic9DD1FEhlfVva5+J5mMJ2+F3FtQUw0dhRWtkoj4PnrMP0PdgqW/6gouPhI675xO4AXoJTSOLYGuGjO/QZGBaBxGpAsEW/M0VGU3HlVqGB4vqubq68VJ9WxJd1owO63fk7OT/f+IgwfocyylXnlK6xdmESXUgpLRmxRZL9WNUDU7rhnz30ySHR3/AKNqaufW8Hd81YePYS33qutr/i5T1hmnWZal2JB4fdSGuzxYuz+YUtdj/0dJzqOyvPYT5ZgfCk8DV+f+W8thaXhfPwHF6xs+NW2KzkHGNvX+XBIvsJWMIbXMOJ5NTDvKSQxGA/miuCYlAEIqvzkI6ArvjifhfXVhnsE6nfrY/jPXE9esK0QSPKq86pq5F973Jq43J3lbs/yZubYCQpj7lX3khCwGJjfgGKhrf/YQJ7LsSSszkjsQjmCV1sfVXVyWz+ROyRsDBNVEhY+e7jconzqA5kxtDHBS+TTgOs7WwHMU5B3zJ4OpyGINiKpjMkIewT98bFxe+ZvI8ZFNabbMpe2xz2JsoQblKGt4e9/+sNNI0Gp4uxFCYMQNBT6UOgSXwZ6Jfy+wOdXGeBn3/svtgMLQnPgAaYi5CNgKrov3OTayvf6RWj12TE8ZtJ5F+QyJtQXm1OfZXsm3WNHvLlma6BvqvEnRnBFx25NeuCP/bh9Yz0fNE3aDmTHpC6LcnTBX9v/Se3JvMKU7GIrJohEYHFkaf9Hdz18iDvGH10Riy/6U9uG1BeTW5dpeyly8n1K11UTqaalBoKv0OOTFpA2jbda8wsXbcwrptuGIImcl3XhBQW22ARnok/xHSvDZldi36DuTDrl/Uv8CQ+2Zn9smaJB0aO2HLWSt/rj3gQZd4B6T84SQ5epQU3U58w+TdnSPq8B3uzTaBC+xld+SndFQ4WgoT87Z/tGJrivEa5dgdP/HlY/A1axqR6J7kkrX9v5IA1LBDms9LnwFU/vm/k7lSt88JSGzxZoQw5VKolJeJLKLB5TEyA2WejFJwhox5QZdeXd7m/HczMzONLHqPstKTsVM5l8xbnUBOPhjxD7qncU2LCpU/KmsS17thoLcGzkroECyNpwP2kNKrYPUcufHKFe/nk+su2wLOedbzv0egjDbKzjXUtjXWJSaXyqtuoME5ZuIObvtxlkXed77VQviWiNFol8w0K8lD6lRRHk+eMStcP2Ej3EiY/FL5mtZhGq8kgQ3eYrXgfSg3WR0TIvI/53DtanZN/WJ5rRPt0ezP3ciF7S4/X5Fbn1fLnTRcqHq14MVMNVkiSq7ujMiW0ZetTqUFYKMSy23A2UsTYr3LjNmhPtVTmVOXX8qZhuJjZjGtRWoh+V7QMjzGG3erqarp9Tk7aXGTCPHSfyTtz4OKhNiOQS/8465nTa1DBSRrZSkCfkpJ6zMARUl/zGHL7DWSOR2xMCEnaReb4vto0Q2q7Hxy3loBr1mO49Zz0687hRVJDJ1E9T1QfMsBDGenPR84VGyouiPczfvv983zk9bjEdJZCYG0ZPAmfjN2+NzBBSSouuz7j0/SrYQRzBYOn4VNRW+P8dKGT9Ux2U3Zdxs09UG0t+StxkQ4Q8kWXiJkfRrZmp2SlZaRM3rUtWBmi2bkrOEGbUrHS+lh+R1Vbe3fX5cErv4KzYGb9IYPfxFWaTXvVCaHEUnpjWqOufSsUW0sUWb3wcy+tFXxEWiuBYYp6Ea7MYepqa2rOXYR4KLAuaEf459FXUzaTqQ8JjdT4+0zGibgYSaJfd+clffSngrMI3rR6RLozrGI+Iq32CXnWxCJcaOrSnxed7vmSO9Og01Xy1UZUtGebaWJZ2n2EraP4DA363w79J+bSXvpfVLqOevIf2JemFJjO5NWgLw6fvTXANZSkpxbxWPKKJaZg0vBqVB7uUbiV2+D5SZiS9/SLdEtw0mtJ8yfJZnwNrSuAjHxILIC5BUWFRwvI46zgfP6xfGFsPsjyzUelmnxhfD4syx8rr/TfYTE2y2K8cdxX4yFuolDO/hvWT7GjAAB4nGNgZkxgnMDAysDAkAaEDOg0IxwwYAMOIIL5BZjcyfALUwEAVR8GSgAAAHicY2BgYGaAYBkGRiDJwGgD5IFYaxhYGCYAaQUgZAHTagy6DPoMjgwuDO4MvgwBDKEMmQwFDOUMVf///v+PosKZwQ2sIpghkSGboYihEqTi/8P/d/5f+3/1/5H/h/8f+r/3/+7/O/+v+7/2/5r/q6F24geDzT0MjGwMDJKE1IBJJgiHGexyVMDKwMbOwMEJZnMxMHAzMPDw8iHJ8wsICgmLiIqJM0hISknLyDLIySsoKikzqKgSdiBFANOp2AAAnvxXGgB4nGNgZGBgAOKNG9bviue3+crAwMIAAqcZd8Hp/+7/2VicmHcCuewMTCBRAD0cCtJ4nGNgZGBg3vmfDUhq/Hf/N53JjwEoggI0AIB/BUIAAHicY3jKwMCwjYGByRdIA9mMbkC2BYTN1A6l8yE0WP4Sgs3EBcS8QLHlUPooEEtD5cQQ6kCYWQOhB2yOHZS2hNLHofROVH0AtS4ZNgAAAFAAACgAAHicjZDBasJAFEVvNAptoZtCtw0U3Bk0m+7ajYqKkSFIFu4Gk2hAZ2SMUOkn9F/6H/2art31phm6yiKBhDPn3fcyPAD3+IKD6nniW7GDB54qbqGDwHIbz3ix7DKzttzBHQ6Wu/TvTDruDU+v+LTsoIdvyy3c4sdyGxNcLbvoOW+WO3h0Ustd+o+l9jb6eDH5dld4ucq0Ocgi18rL9FklvliP41XUDxmQiTC6PysifZBqLtJE7j0xmgTTVbjwanI1Kk7NqZw99Ac1VSyh4WHD7xEXGOTYYoeCLodCRm+4EEmTkxV96c6kBD4EFzdGjBUi9BHaCZI1QdJ0M3ZGpHKGwpw+ZVViz0kCI64swJT9IRZ/psm8ZqmYfzI4/d97yPsOmvX+AqQxakUAeJxjYGYAg//NDGYMWAAAKJgBvAA=) format("woff"); } @font-face { font-family: PZEVTR-MyriadPro-SemiboldIt1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRk9UVE8AABF4AAkAAAAAFmwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABDRkYgAAAA4AAADc4AAA8xarIyb09TLzIAAA6wAAAAKQAAAGAKqglBY21hcAAADtwAAADXAAACUhWYFq9oZWFkAAAPtAAAADAAAAA2+OK3zmhoZWEAAA/kAAAAIAAAACQFAgBXaG10eAAAEAQAAAAdAAAAtFl4AABtYXhwAAAQJAAAAAYAAAAGAC1QAG5hbWUAABAsAAABOAAAAq92YXf0cG9zdAAAEWQAAAATAAAAIP+GADZ4nH1WaVRTybbOIZwiSAxKPIg53pxoO1wVFVoutuA8I6AgoDYKCiYyiIABGbSRMINAEGhBFCLzpAg2jaIojuCAKNqt16G1ba9BtAVFb999eMVd71Xot956v+7KWienqk599e29v9p7UwJjIwFFURPdvFdt8tw4yzVWHeSndFOHzfZQ7QnyDwtROkUa1r/iWYqXGWvERvxEMYO9sHaicdZ/7aCh2xzw2DcTJU8sBEYU9eztirBwAhEQGKmwXbDga2vD027kOd9a8bWNjc3I006xTBnmr1J4xEZEqvZEKJxCd4apw8PUfpEq5RzFspAQxQhEhEKtilCpowyTfxJTBEUoVEGRgSq1wo8sBgSR/WqVUhGp9lOq9vipdyvCDCv/b7jrPxylCApVECyFV2iQYeQRSSYjFH6hyrkEJWzklJ1h+0Ij1UGqiDlzV3t4xoarFN8olKpdAgFFfgIJJRhrImAFgsm0YAYlmE0JbCjBPCPBcpHAVSDYQAk8BAIvI4G3QDCbeJnMuQkCBWmC+4IvlCNVQX02cjbqMBoWLhQmCcHY2bjS+AVtRq+lA+hU+r9RAGozmWRy0KRSJBLtEjWZjjeNNb09auGorFEdo16bLTJLMesRzxAnii+Pli7LvMR/uESR55RLwkxjPn3IbTgdgRZ3MHgx5NPQh7ACX2HAMBjOMxlGviPvsBiTMeIvM4Y3bBhJhlkJLoTIV1QtnBCeh9vMfnsactDxV7QEv0mArykdzBa+SWDaTje2nQut89sapNzmXxPSwkk0ffz+PupHMIFkEAlBPzSDwW5YgOPwLjzu4jQYB5s+ghaUINjxB7bi4uYw3XmLt072wt9jyknzqAPMu+DAZ05SGjUkj6ZgLhwXwjpLoBGYD8npmQg7LM6zAfF1OhtJMgd4ZT/Fj4LRQn6+pW6AxjnZ6GYrDVZ/gOifwMr0659h6ZoVEcHe8qr5dNnJ86Ud7N1aP5+5NnZ4Jh7D4dGz4pbQEs0ABOthSb8FPAeJLZhLPxWcZPZVdUc9YWEySH+F8Q/9OlYd47KyaWnf09Lumy9l+sU3MOXqHLvXV66bR+vqLhy7zHZWh/uvsgtex4WjWFu6Fkk//XItZI3btx6zXbeVFu012ASOvXDuE1XA7xfyQsuT4Ej/gop7aQf0iJ9IYznCz4ZnfLeIhnq0GzvS2BgKmKxsUMCSuuayxpqWCTkocZfGP0kVgFdYSTT9kKGHcR8peG3wwPdDcgY/RnPxYzq7qjS7jgXzxq0ujgu9HLy8i4+pud1z6NiKmzE/sTAbrPrArlN9zbuOq1Zu+17JapIyMzRcM1jSEIUkml4ofgOWv1MNgCAUxEI+YWg6E5d1IDMiwy7ZbvdqD5HdyqXYCs+U4bHds2AiTP8MliD74vL4r1lyz03qnbu4jKwzH18/BtPjE7TlJZnHWRw/HM1sCL7UfSyrKLuIyzqSU5h7RHSu6mztOfb66QCnpVvtFhs8xF/4SDXweUKwIObETKehBWVlYDFeh0djZyzBzhOAIVoAD5DARhgNG489syKa1IAtrAVbCx1YzwNraQ+x8RnT1tB44WxYPVHnTp+dBnVKXzljvWG6rWVkWrltZFpSRiLjqYeLv1NhfLeQnwKejA570iBB9kP2NJ6GcO+/yQUYg96CJ92kZ17AQl1zSVtJ84RspN2Zs1kboMMLrSRRaW8h8jdwf2vBjwPzeSCWfqrKZVJOXk+7zw4+P9Z8nbvYcObKQ9kT38suOrnWRNr36ER3xytZ+95mZYW81n9L4Sp2vUdKgi/30YHRFpZnV7NdZyM8V7v423FeKPZvzDWiqYe3wlfYOgba7YvKyo7hJOkJA3zSJ+oiWAj5DDBh9gd8m+jN4gnur4DuP/Oq8zLXfP52WRfbeT4+voxreEcfjfEqWcbOnB++aRU3Y/kGbIYVMrwCjLEAVjy7VXS8US55m/aeT3xH8RUElBiQeqY79SEL8oHqrqfcqweXQQRSWV/IHZ8W+RUv+xosYF02pCZ4cp/smRxdLSENkzqXYuN54Y6bPDgv7+WhNuxedZY2kpMsyhwAn35YNUBV8IeE/HZ+MoPTUAOsouEIIvd3eBTC44in+QmGEa5EZ8CHhlQkmU8C1NwPGw0b04UVlmCKrkIzDRqk66exBjXCRhry0AkCIUKSR+Tr9i9QGU1VDpkLYfaQPTMCCyJ0HdppqEEbMfkzRTDOEF5TtBlX0rgaXYZKkt8ektRjH02VQYYQZv7f1v/9WKLIHOR7ogmNqYQGb4F0gzQuQUDxPQYgCcTkgy2eEsXfAiOL/KFyafiQu+Ubwyk2CM/HPbS0KdR998oIZ1EaOtSV/CD1ZgDct8JzkDQcLzGcI0BP4EHx/RODJU+IuHIcc+3yl4qkTafxPVqPwAF+anrY/Pr0swlatP+bOOuE1SJpuC9+QEsAafr59H6qDcz5sTBGyM8dWsbY2Ae6reccFvliCyyW4Vm9WArL+1+cvnlL/uzpWRgDYhnMsYexeK08bgYDY+pnfW0fjE3c3bmAwG1RREa0z6+DrxvAqLOTa2xsLbvMSpTEt9r3kEzksRxMDaEwQW2koGSUlKZXsM+flJ69yl38oanruezmvnM76+Snd6w96squX5+S4M8NzGdyjpZl17Ld7XtXOq5z+at6f3YO0XAswax/A2F9FL8UJMJKA+YVqKdvoNv1IX87zOU65DkfPiACMdJUpz5N+jWlK+bC9uIsrdVvVQ/uD8iu7f1RVSWv93M9uo7d4JKSsIP7+A2TU6QzHHQxzHX5eg8bzoloKOEjn/iJ0pPEYUROOdzERNTdi3zBwiygXgL7wvvqgrOcS6Oq+rysteXsI/m1rNaYsvgzH6yO7fXWLWXxRGzsgBnHTq+nflx3YO2e7bJ1GwLXuXmWVKrkkpUkc/UMUt18vhCmGOQJAqIIcEMnBunheBQ9lYYNSBKkeecaxVvrM6Mtakju2jYg3cZ7WmZ05PcW/XwJ8qykpwp3bTyyicXRWIRXYYcZN9a8vt1Vr2/jtEgakuaXpjwUKiqDGkZ6Co+JdFrjxW6JaWkH4UsCJig9lpFeyElCNW/g6XsIjCZFWAwHiaVgPeTNTB3W0qnhaaFhsnmHbu0YZEH5BzjDnNc7Xn3l4r5nk5LLQLegjZ4zHMD0n7h9+yZ7tdzXy3otHj/VL7KsmTtUri3RFoskeErCO/jpPTGgHiTSHl7wL0ajDor3Zdf5/fjzp4dfgD5ZnpxUwkmb6nppaU9+rKpgB4udMIOnkM5C9HgRSG5fOlpUw0n2aN598xKe6glTi1rC32NQepHfTJjuwFH091Ghh9UsXoPHYlu8BBvdWvn6zs36e+e4bCT9LsGO/hfSXsnvKrg+yDdYYb/hIEZ6cVq068bNrGfk+U6gHoHwY21FYkIRJ7FO6AWz1zDmNVVHipkKjIQ8CzQTG7g9zpP1CSw+FcNpdGmnsotF4JYG45thrOyX9ddn4YWkZ7HD07HZ3QXAdt49Wtkm94ZXjPvi/VicLe8sarv7M9tUGbObk2Adif0kPfzlAylcxNszLR/zk+hPqFhPT0M55fSdgvr2a6zueHpqIVf2ls47qM4NYn23xYUEcD47I1w1rqlqKxe035a+g5YOT6IlIVjVB6N64V4voWwuLMArmeiTHQdvs7d6Clvauavna/5e8v4RP83qhO/6IhcW+2JTbI/tublZ1xw/sLfbazqaiZviPWlMR7gHLGF9vAqLQzl4Cnpm3n731e6se1Rbexb3z5/AaLC6MiWlUC6JIBZMH9EMyR1iIUy0PAff0Z91XfdvsOeKQ3dFpEelx3CbcZUhhV6FBvpwtbahUvbGs2XtGq/gLf7yDHQDLhoSIJb925vk0KcE8EC0HiZQMB6sDIB9/AHD+tzhAzQs4a8yP5ysPpvFNe2tClDtDvWTBxyq3NvIjmwc8o6mTsBhIfzFEtghbxqLEJ5oQP2TpSbaAgT9sAJGS1sJbgvso6VPAJXe77rCnj+2Z2cM4RpLuNb8ybWRPlyZ01Ame+vZsnqNa7CTL+EqbT3yD3oKSvFL3hLv7oLfWElCNHp4oadOkhuTTHop6OZTGeyATfBXeAEW/d2eNBwOpOxNhgUgWP0Oj+fibJmHZa7fznTHYju3gAv3eq/CmD6ihWjCcdznKYAsTsAf0iZCsAm20F90V359yebnHzqUy5UDorOSErOS2LWbtjoFc+lI2nO4UdugPSWahlK2pyw7uHojvkJ6mhTNwJoofrLe4iZpJMJhJv+GiZ5MOxmU0o388B5SSpIC0sPDZB6N25/X1OfkFssLeumM+LjMODYkvriqNKcyp5z7Ab6lgUIlehoboUqQ0SRB/G7/ip8WbdFKrF3WL23lrfkDjC9OoKfFuDh7sT4Hapt12orDFdwl0Bm8b4h7cnB62F7Z9Ouqh7dunbpzQU7uYUyCPf0Z5bbktRd0dAFx4rxMGDXTEHeLNn63NLyNoL40hJskwwpD9BlEergMQjvcPS4wPkSUjjJOpjSldIRAqpVkKqmZEE3t5uuErWTjh2Gv7MTMlLSkCfuUIUHBEXv2BR3cl1w93aout6v8+rW7d67+1glmsBpIF2qOJuPkyE3xwfF7JmSgtFMpjYmXVRBPGuQCSMuFxAKwLjhaWFGAsKqgNbcslzfPBVmuyZ+r8QUwd2RVNLJalcub5cKSXFN5qf92sWmm2Ew/CszN9EfEYjDPE4/mj4/jHzL/A8UWLr4AAHicY2Bm/MM4gYGVgYEhDQgZ0GlGOGDABhxABPMLMHmG4RemAgCPWgb5AAAAeJzNjstKQgEQhr/j3S6m2cXU9OSlLCvaBe7aSIKiRC/QMoiEiKA36T26UPQAFbaSfIAeJP5GTgt3thEcmJl/hm+YH/DjZRbHKk7TpqF6IMCd9QKuKZ/VfQ6pUadBiw6nnHNBlytuuNWPZKzLHgfGHHFMkzYnnBlzacy1x+hbA32pr0/19KF3velVL3rWkx51//d5XEyrL5wQZmgMMzr4/ASCoXAkOjMLc95uPrYQTyySXILlFVZTrKUzozfZ9Vze3SgUS1BmcwsqbO9UYfc/Dicfv3sZXyoAeJxjYGRgYADijRvW74rnt/nKwMDCAAKnGXfB6f/2/9lYepjPALnsDEwgUQBBJwsneJxjYGRgYD7zn42BgUnzv/2/X4xfGIAiKEAXAJZ1Blp4nGNiZ2BgAmJGawYGhncQNlFYkwS1VMYAWNsC0AAAAAAAUAAALQAAeJydj71OAkEUhc/IT6ImljYWTGsMBCgoLLQBAoQlm4VsQTewC4xhZ8iwFFRW9r6HiZ1P4ZP4Fh5kYknBJrv57nfPnM0AuMEnBI5Phe+RBe44HfkCJTx6LuABz56LzLx4LuEab57L9O9MiuIlpyd8eBZo4cfzBa5ExXMBsbj3XERLvHou4VZ8eS7Tf4+snNvN3unlKpfaLKzLVK6tkQu7M0ktnHbiSVQNGFBJ6Gx1nGZ6ZtdJP49spswgTBO1lmG72+xNgqE8kT+xilO3PfyzUaufSGEEC4k5vxvs4aCxxAo5nYbBgt4hg6LRZEN/cDtSghpCTNFBjAkiVBH4BsVdSLJ0Y6Q8rzHjtKbvsykiHzoNBsyltIo7SW6jiyZ67Asw/DPn9J93KqZz2P7fs8H71c/r+gU7XIPveJxjYGYAg//NDGYMWAAAKJgBvAA=) format("woff"); } Perfect Pad manufactures ?oor mats for trailers that are used to transport horses. The mats provide for a ?rm footing surface that quickly sheds water. Mats are made to customer speci?cations via orders submitted over an internet site. The mats are completed and shipped in about one day. As a result, Perfect Pad does not maintain any work in process or ?nished goods inventory. The following costs were incurred in producing and selling mats during August: Synthetic rubber used in the mat $134,300 Lubricant used in the molding machine 14,000 Factory rent 9,600 Electricity to run the molding machine 2,600 Labor cost of machine operators 34,100 Internet sales site 1,500 Administrative salaries 12,500 Depreciation of molding machine 7,400 Salary of factory safety inspector 3,500 O?ce rent 13,500 Evaluate these costs, and determine the amount of direct material, direct labor, factory overhead, and sell- ing/general/administrative costs. Next, identify how much is considered to be a "prime cost" and how much is considered to be a "conversion cost." Direct material/direct labor/factory overhead/SG&A B-17.04 var isIE = false; var f1 = [['t1_1',1846],['t2_1',1846],['t3_1',1846],['t4_1',1070],['t5_1',1380],['t6_1',571],['t8_1',684],['ta_1',209],['tc_1',669],['te_1',562],['tg_1',303],['ti_1',391],['tk_1',586],['tm_1',566],['to_1',183],['tq_1',1846],['tr_1',1846],['ts_1',670],['tt_1',860]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed