1 A 0 500 mL sample of a liquid is found to weigh 7 77 g Calculate the density of the liquid in units of g cm3 and g mL Be sure to answer all
A mL sample of a liquid is found to weigh g Calculate the density of the liquid in units of g cm and g
A mL sample of a liquid is found to weigh g Calculate the density of the liquid in
is found to weigh g Calculate the density of the liquid in units of g cm and g mL Be sure to answer all
A mL sample of a liquid is found to weigh g Calculate the density of
the liquid in units of g cm and g mL Be sure to answer all
A mL sample of a liquid is found to weigh g Calculate
A mL sample of a liquid
1 A 0.500 mL sample of a liquid is found to weigh 7.77 g. Calculate the density of the liquid in units of g/cm3 and g/mL. Be sure to answer all

Category: General
Words: 825
Amount: $25
Writer: 1

Paper instructions

There are five questions that I need help with for this assignment ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:75px;} #t2_1{left:113px;top:75px;} #t3_1{left:76px;top:88px;} #t4_1{left:139px;top:90px;} #t5_1{left:145px;top:88px;} #t6_1{left:78px;top:133px;} #t7_1{left:78px;top:179px;} #t8_1{left:102px;top:181px;} #t9_1{left:76px;top:222px;} #ta_1{left:113px;top:222px;} #tb_1{left:249px;top:222px;} #tc_1{left:272px;top:221px;} #td_1{left:280px;top:222px;} #te_1{left:291px;top:225px;} #tf_1{left:294px;top:222px;} #tg_1{left:475px;top:222px;} #th_1{left:76px;top:249px;} #ti_1{left:76px;top:262px;} #tj_1{left:154px;top:302px;} #tk_1{left:249px;top:303px;} #tl_1{left:76px;top:347px;} #tm_1{left:113px;top:347px;} #tn_1{left:259px;top:346px;} #to_1{left:264px;top:347px;} #tp_1{left:286px;top:347px;} #tq_1{left:465px;top:347px;} #tr_1{left:76px;top:361px;} #ts_1{left:76px;top:384px;} #tt_1{left:151px;top:419px;} #tu_1{left:76px;top:462px;} #tv_1{left:113px;top:462px;} #tw_1{left:476px;top:462px;} #tx_1{left:78px;top:486px;} #ty_1{left:189px;top:486px;} #tz_1{left:264px;top:485px;} #t10_1{left:269px;top:486px;} #t11_1{left:493px;top:485px;} #t12_1{left:498px;top:486px;} #t13_1{left:76px;top:512px;} #t14_1{left:78px;top:526px;} #t15_1{left:151px;top:565px;} #t16_1{left:76px;top:608px;} #t17_1{left:113px;top:608px;} #t18_1{left:76px;top:623px;} #t19_1{left:151px;top:659px;} #t1a_1{left:182px;top:317px;letter-spacing:-1px;} .s3_1{ FONT-SIZE: 50px; FONT-FAMILY: BAAAAA-LiberationSerif-Bold1; color: rgb(0,0,0); } .s4_1{ FONT-SIZE: 33px; FONT-FAMILY: CAAAAA-DejaVuSans1; color: rgb(0,0,0); } .s2_1{ FONT-SIZE: 21px; FONT-FAMILY: BAAAAA-LiberationSerif-Bold1; color: rgb(0,0,0); } .s1_1{ FONT-SIZE: 46px; FONT-FAMILY: BAAAAA-LiberationSerif-Bold1; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-LiberationSerif-Bold1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAADboAA0AAAAATNgAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgEiAP0WNtYXAAAAFcAAABLAAAAvr/Wi9xY3Z0IAAAAogAAAEJAAACBkBuPptmcGdtAAADlAAABDcAAAcFc9MjsGdseWYAAAfMAAAqTwAAOMTDEfvUaGVhZAAAMhwAAAA1AAAANjjcGhhoaGVhAAAyVAAAABoAAAAkByMGeWhtdHgAADJwAAAAogAAAMzOfQvAbG9jYQAAMxQAAABoAAAAaGX/dOptYXhwAAAzfAAAACAAAAAgBKMFdW5hbWUAADOcAAABLQAAAqwJGq9ecG9zdAAANMwAAAATAAAAIP8kAMNwcmVwAAA04AAAAgcAAAJNl4KtRHicY2BmYGCcwMDKwMCkzKTMwIBOM8IBAzbgACJY00AkuyLjbkwFAJ/fAxEAeJzlkbtKA1EQQM8mm81u3snmnc07m3fio9NGREQEG0GwthT8ASt/yQ/wD/wAwVYQfJQWNjJOTAzaBVsHZph7OcycywWCzNPD0IrxpiftDBuTV73o0NDO1NpjzBY77LHPAYccccIp51xyzZ18iCg9p6ZK7f6izrj4puQBR95BXjQf5Vme5Ebu5Xa2Xa7keL7/K2qam/yMIdvLPkRVvQyayvWw6FLCZ0CAOmUiTKjgEidJgSIpYoTJkiBKWj0dcmRok1df71+9FcOafXQgaIassO1EorF4IplKZ9xsLl8olsoVr1qrB5utdsfvrvcHw1FnEqqaRrPWs7olf7BwC9TLjNiYOdsLySm0lsaRScWNJwvFFMTC2UQ03XBymXZ+7PGnWFsN66867xO7IWCueJytjjFLA0EQhb+34VADKhosLNPkD6SUdEHQXGchhJQHgqDBTjFpLZRDC7G0sgwWImgVELHTXsRKLAMKNlHEc+44osErHdi37NuZb54XMkPTqzCZ6lDlOsxyBlEvfv3olx998I81mqimVeSGd5XlaKlAnYAmLXZV/t2tOfn21+bR/tcJNZJNVVEljRuhnvS1ueMps3GDLq/DO8w74oRO7GveWIe6lq/AGDHZN2lkodyqyb6dTdM1p9R94ZZ7Gq7rnjngNM03QU9Vu2uW8CIF1Fj6A720FHlW2GLHppPyKp8PjEVvxlrkyowFtgkHE30lO3J5ooG3PMgYuD0VVOKYPlVvSuffeZNASwAAAHicdVRNUxtHEJ1dCaHwlRUhlKr24NmMpUBJipyykwBRYKPdWUtRnCAkV82SHHZBokROnHygkipuoQbnv/Q6F5GT/0D+gw85hiO+Oj2jFQaqolpJ06+7X8+87lmXh+J5v7fX3f3xh2ffd75rt54G3Pea37o72980vt7a3Pjqyy8+f1T/rFZd+7Rcesg+cR4UVwrWh0uL83Mf5GdzM9mMaZAqZ0FEoRxBtsxarZqyWYxAfAuIgCIU3I0BGukwejfSxcije5HuJNK9iTQs2iCNWpVyRuFvn9Gxsd8VuP7DZyGFK71+ptfZsjYW0XAczKC8OPIpGBHlELwYSR75yJfMz3nMG87VqiSZm8flPK5gjZ0kxtq2oRfmGt9KTJJfVGUhU+LxAHa7gvu244S1ahuWmK9dxNOUkPNgVlPSY7V1ckGT6mv5cmyRg6iyMGCD+GcBmRhzZYZL+TsUKrDOfFg//aeIJx9ClfkcKoq1s3dTp/O+pAEzJYtReU3wOOzq37tInCK5knVN1DJAeaUMGA1kJOPxu7MDRi0mk4UFecJRYbIrMGv87q8LG4KXIVjRyNhKDxvsdeCj7k8CzFJARzEi+OwwZ8N2CuE0Zvf/3ASFQDlQU8dRB78Yu+QADTjriolNyYH9irj1SghmpDyvp56PnyvP2dRzkx4x7GanJyRkS+0B46jxRQxnBzhPv6hWMAuW3toOk8sFulkPdSzFXbUHxxRmyigLZt1OwElRKdLSxtLbyd+VjQXKhWW6yZBG8XDGo/R5MSoiAa1VoVWZtL4vwPVx4cZpj3jyqI4ZcYQtOvZ1+6DOTmCFNW/6qbbFj3tCp6RpsOIBiQ7TLKhzX1WmXEb+ZAuKi3XFJXn87k3yhNp/PiZPSOir4FUP56rMpRgcwYPIHuBNO6LCdsANscEhE8NQDRoqtP4Gyzm6IpheX3R6rNPdFxvpRiYORZct8Xs0TNgTGhw5yJfyVJh2JsRACwEa4II1G/gLs6U8fi0UXKNqVJsNKgybTKNxG7BO+dBP45R9h3RGjZPXmrLllIk8Xst2QmfyqVVNdNO0MGbklaitqStTwjcBYibSaEhpWVQzTwUbspCNKLi7Qp1NyaNVTsXQmqe96t+xbomFMhEH3VNDiQlBxb4tLjzV9o3ZuuduT91U5lmnJxU5SwkJ7rwNRI2wu1Gw9e1X95kFMV5ivNH6PsvEddVdHqlrK1l7IFlPNHQ0vkF+s09VrWXSMTr9Zq2KL7NmwozzbuIa5719cWkRQs/74pVpmF7UDJOH6BOXlBBXo6ZCFagMqgzFtIdGXsfbly4hZ9qb1YC2D8cG0Vh+ihnkcGxOMGuKmYhlJ5irMfXBLhVHqDG+vzkdqP78Go5kFKoZJ6uoCD4GGGwb1WHbiWHmFmCODZswz5oK31H4zgTPKXwWJ8NYNWrVU2lxdl2s/Qd28PO3AHiclXsLfFTVue/+1tp7z3tmz2tPZpJ5z84kmSQzyWSSDJuQTQiZSYAwxEAgJCQoBhAhD5CHthJPEURr4ajlFKlKrbVaUJD6rLbGlvq7tkXpLdr6auk5nvZ4NQfbelotZnLX2pMA2nPu73eHYfZaa6+19lrf/l7/71thENPKMGgdt5zBjIapfgKY+NxTGpaZrH2C596ZewojUmSewLSZo82nNDx8NvcU0PakNWiVgtZgKwrkI/CN/AZu+d+PtbJnGIYB5iGGwYe4LKNn6pQAs+UABwwncAqX41iO12kZjaBBGo2OZ7htuIhpnqxtTsb7k7Y0xPv7J2sSkssZTDVYNSkpiR57f8r8H3+EG7+2pWjFiiL8l8XLf0sewSDGwTDcs+QZFsbGvKjcmNWs1KAeHkr5Nh6xvINHVrNFsFhYTrCZjIJxpRF4DXQZBV4w9mp4h0bDLxKAEQQBqcthyY/AYqzVOgRHwKE4co5xx0HHSYcm4RghxaOOs47zDh6bzIM2qxUEjrUYNeyAHmxMc3KytpZswZaOkxLZw6g1Gbe50u54UZxsqH+fEBOYl/ZxMeE09Av7JiaskLQmi+KkVJMA0qFfovuFIKj7xkEMOAjH8xvWwbsQgreHpo4dGZ+auglueReebG9vL2bfu1hSTK6wOv8d1jN1QqVH5/SH+BTXxZiYINP1lDFgErL6Z6fPf59ceXJVykkB01aGEUj34YA5YUZmc7hoWNHmtAe1WGvfatB4t3Ju8kKaJ8k2JsmG+if7axIx8gEHMkM4hKyCLVlrg7pqFA6ZkdPhQ8naeQifSl3/8Oi53/zmnXPv5N82hxoqKlI+o9GXqqhoIN0eeiT/2ROrYR10wxJYm/92/sQdbx3q7Dz01h1fffdwV9fhdwnP9E7/GzwMccbONCsl2617rWi7aa8J7dLs16BdeD9GlkMj3DiHuGenJxSD3pTlOKdDf4T2n7TaIB2PUdah1ORC1ShVN48szEcWaEbAhOdWeTxVc8OhJnpt8l5RDtF7lGe7CP2e4pqYamZACe/0gga78D6My8oquGHGI3gOerDHk6gYtew2HyCEk+gynDpzVor4tzKMs3xHKe/cqljG9YR+nl94CAkJ+Sg7xF7ury2Q0pqO0xXCzLrCodIoTrp8mFIwNUNRTdgadAat8zCc33pie9Ocnc98aehHnca+OqE6lS5u7mlwe+b0t/riUsCyDr0w9X1bRaoFu6sHv75+4N4tc11WWPhrnc2kq1o2unDR2OJSjdHMo5O/yx9ldVpelc0GhuH34Z8yaRxUFjfUZmpRQ02mBm2M7oqixmg2ujKKN5buKkWNpdnSlaU4KjVIGQlHIw2RTARvdO1yIZfWYM5uFHeJSKSlFcKQsF3AAmWyaZ0pu0IzpNmuIZLEh8Uw0oUzZWWpokzaDrxdtCPRLpfK4JbBIMPfL8rwBxmek1+R0cMyyMqFv2QXyaCTy+W0jN+UP5XRaRmelmGjvEs+LOMVdGC53C7jV+T3ZfS8DI/KcESG/TLcJMOQDGkZYnS8W0Y/e1+Gt2U4IwPptlc+JCM6CVokr5ZRmj7ryWezZGY6L9okQ78Mi9RlvU+f+i596ssyOkw6jn/zaFad8Rtktafl92R0SH5YflrGe2TYTpcG3TK0yFAnQ6msTAMrw5PyafmcjLeTfuhq9X6pXC+3yZjs+T35Y7rZl+U3ZHyYrozcXidvk3Gb+ngyesOfaS+gPdA9dFt71RXzhG6ItL9B5wdCrsLz18lAyBKR62QkqtT88ex9ut/9KtFaZaifIUsjmeF/ywATMjwkPymjO2QYpMNb5e7LyztLNwonZTgmwwhdUytZIj4n01EoJ4/I4/JJmW2WgZFByyQyTEpITaTOpthUvVLU2WhJlIWL7KlOSUw6S7q0JqGyi6h/qibVr6otib5UVUztGiKwA/39o4XPmPoZGBujzYXP6KVP4eblW59rLdyJXW6PjX2x/+URsdl24R3yS+Vyck1/bU1igEwQK0yifmAekU3RRX+JyFoLZqmuNBziNT74fH2mEk0F4ZS/o6unqnObL3DV6sHK9JoFkTX5qu75LZHlUY4rFKUl0op8VV8fbMa9QmnAmZ5vj0WKfC3XLZr6XlFLSxGKd69x2Z01xZeronWqTS1/UtRC5ThM7B9D9JXAJBWfpk9rS9gU24jtqI1FvUYwDViwcUDRjKNBPbFQkwWNRLTRZL/wW6InQWMN1tY32JN4ZtXozdfA+uX7fV29pRfbjx9DT7Efey4eNPPgym8iFme7p508c970h+gDojtk5jElde0cWDEH2DmOOZE5WB/0BCuCWO/1eCu8mENOJCG8sn5DPWorhvIyRXBky8qYrJNoze+7vepVadSJWafT32RpgnjTiSbUpBDrZDQYarMWPwz7d/uRv9bJxTuV8vGIYOtUxo0Hjcg4zolUwfaT/dBN2dLUaxidTMaTMWJ4iZ6NxSZr47FkTYIhL3DmParathpFrQV1W0+1bbQaF6yE6HKGSYW8RWrOSAf0QVX/19Ymru5uNrWUWirr5wV7lrvrr5qTGFwUT/V9KdN2Z0tLwFRWU+/OLvSml6Uarm6vgIqO7V2VRquV+Dp7LN4i86I5gepIwGapyl63pHVDRrIZ/rTFVGQzyMlgdcQnWOOZq1W73ULszu/xS0wZk2KOKbvKRdCLHhF1EJNmgwobGGzFNlSP2zBisQNHMPbo+cxIajyFqNgdpGKnS6UcDUwDLMo1EP2uNOQaBhvGG8438IpawKFwmIkLcRTPOEIK0dChkK+80+NhapfpLSLfqXP6OgkbUatPBJQKA6UiZRVC1P5RIiiUrGsokZMFC6vSdFYkomYcnrG4zZBSpcEC4dQ8bNeYsdMhEnI3oNCSf1pTtyb/sGhPtnTVdg23+lq3Hl5xY2umYXVFaUv1VSsGdnVXKjHn3ESiNYBf8jSta5+6r6glawqU2CsWrZ+7dluzA+H9V/X4nTf8m8ao5/MujBzxxXOW55xmlY6e/GI2QHjTz1QxDyrlRV4o8gDrcrjQXgOw5Mvv4RGjBZ02wwSEQCAwEhgPcLYA5cQq4k4EAnEmDpROgTiWc/GzcZSIK/FcfCR+NH4yPhHXlDNi5kIxFNMRLmL5i0s6fZZisbOoOJYTTKKUu0LLTar6jbgktbX9hICjlKJr+omWmSVgQbXMugE+7IXLCkR1BYhKoaSDw2KqeXH16ReT1z04XL+hETDA7VMXhtbDl2FdSaI5nOwJLlvZuwJ/yVJsN/7hk7Hnb203mQ2lsXLLGaou2ONFLfm6zf+8PCwKU7LzZdUHKCMEE7k7GR31dQ4jOAzgAmAy1Es/y2GO0xsUQ86ABg1HDScN2EB37K2py/oNcNIwYThvwHFDs+GAAfOdWqKGOrGTKeyYqNjY6JhV9XbITsfGpMu7OrE+bxsahFt61WW9SbUYfW9t05N4Jf4J4yWr2qx07nDvc6Pthr0GZIn4I0gQDvLAtwUiiYgSORo5GZmI8JFIRbyiuWKgYrhid8WJihcrXqu4UKELazJnycvhl0YijNW0TBR9SwtMPXWGOmKqsekveLS18f5ZP8wLwYIPW9/gnOXjehf1bJPkLcB/XrV3TTJvN9Rcu0oeSbraruqr2nV8c+2vfhapLta/xdnL8E/K1n5rV5ew4KaBRpthibnEaVJufnbnX/98bcXiLQsWbFlccck3J7xpZSRmv1K9X4B9RsD7tHAbBpYgGaRjMqzNYYvYsMFmi7LRPdHTUdx8OnouiqJUZaabsvSqVJTFsuejBIBFlehgdCJ6Nso9EAUlCiUZRZ/Tn9VjvWupRQgupUpyxosn72RgNBYjXKhK8QwPDlzWijNakPsHn77muu9uH35wY23tdd/Z+rtf5t82BhqrKuu9er23vrKqMWCEt3c+e/N85ebndu545kvKp39ae9fVicTVd629+u51tbXr7mZUXrMQAvyIe5AJw3FlOhOCTBA4P2j5Ih7psEGC6YsSPCmdllCxdId0RMIWCd6TPpbQTaRyTMLdEsgSHJOel9A9tLhIQqzkkNCrP5cuSugh6UkJGchA9J4EtD/qltbRqeADCU5L5yQ0OzImAUu6/Fx6W/pAwvdID0koJq2WbiJjWXXCC9I0nWpToSlGHnSE9L0ocX4JyDI3flx4+moJS8rgumxcAlrZpC6ak5TuldlmCZBF8ksD0rC0Wzoh8ekLEkjKwvbsWQlelICRvn9QQipwaIlVZ1+jDzwqwW4JBqVx6SO6dT9Ze7Fg8Vh8GXw2DOFwxBfuDDoZ71LssThyikXwC3Hia4/rYNYIJqng1RJIGScwo7Y2niQs3j/j/9CXPkAlMlZwdwre0prLztBsbdaRorwxsIbW7eFUwyyIUu0jUN7wQtIZLrg6933ta3Vr71wlxqtKzYpX53eJksfy4ouHp84P4daF0Wuv+fo1tZjTsOc36yzFTWvb9m+YEqnkU3moIj/Fqv7xMtuUZY6OnP6gHp3Vg17DFrFEa8PntJHPr/hzfjToP+o/6cd+P5z0T/jP+3Hc3+w/4McWt9+N3FdZGGLKLFdoo+ZJav9HZ/VRbX+y35o8Nzp2OcKgKtvLQJEKAzw5o6byrxdVNAYCjeVFReX0WlHUO+t+QfbKZtKN7qmb2J9B/CbROZXMQ0q1Lrw/jG73gY58nW4n0ukcBAABbwN9hTWjZURBDIjj4kHxI5G3iZQn2ohlFsVqphqYaqE6UE2MUPXZapSoVqpz1SPVR6tPVk9Ua6hIZSwBSASUQC5wNsAGYsalkuDhcl7RKnY6igt7T5Kv6hf1X2F+kpPpmgR932sKTlFB71kLr7Zgf4j2a6A4v/TSu29Iwq6SZEe8dLk3kCurX5wQ0S1DUxdu57jKLy355St1mx/Z5utYnC3esRomhvZfFXZa0S+0uoaNRz77CqXXr6UNiXDsb38be2q8ldNocYxuwD/9R3YuPs6UMKeUrzS6si7UKGZFtFK7QbtTi+doO7QI67RubbkWs27QuTMM6wC9w+H1RXyw2gesj6w9vc23x3fad87H5nyABF/Cp/hwzjfoO+k77/vIx/l9MOI7SmoTPjbuA0vmgn5ajxi9oEd6d2eJ02nodJktNoJNxBmrXcAkqsYcnQEhowXXJ1nQmgNqsGbGTlDusVL3RuUjKhToJeL5r6xKDy4sXQO7My2LF6+AHX35u7uoi0+de7SiqGVqR/eaEHqxqOWzx4kJRMxV0x+yfUQWSpgYc1ApcXlAZ9hvQLfzoOPp1h0MIwnSiIQ9qubIEC6RpCqmCpgqoSpQRbik6mwVSlQpVbmqkaqjVSerJqo0jBe8GYsWaGjnrBZr1f12upjypRaTEMpd3vKMkfgCnyQnC3xS2OsML7iqcRPM7PRzvMOjd11VDQurz/6iduO3hjcPIwRABGh9/lB+ry/ZEk4uKS3PVvWuS1EP5cInY8/+U1uxoayq0vKfRS1/J04KvL3l7lWlRXZ02qD/6WyMgu0m9jLA/OA5Rjt9lugXIXvY/Kj5OTM2B4xC1kwcOp0hwwoOAXkESpdriAsnCKFICFaHgA05QoQ/QntCp0PnQmwuBCgRUkIoFxoMnQydD30U4vwhGAkdJbWJEBsPQZ27legQxpVhSoSSiZKzJWyJt9NvcQmGkk6P0+x0XIKwzZOXwWtt/5WscsnHI0ikJhGDf4SNX0SJM7xCIKHKLFciws9jwdDU/CuxX5DgsG+xtzDFTI+S3oBhDu7AvRgbcDGOYcyIkBNBFI1CRjdeCL0GiCJlOa7Ey1uWGnRGi8u+jKEeQrI5eYYYDxo+6x+lwJxcVA9VjaFZw6lmovCpyi+48cRFgqcXbWoN3PTPNxx6+eX6ytACr7l+fsYRae5Jok3zo6+/vmHqu/Nb9PxyvcOiV98lP/0h9wKRdQeWlWc2ECVoFa2IF0QB9ZhhpRF0RrcR7TfAej2s5MHNghvDdgZ00EUGT+t1Dj35D10GvWGp3eGw2x1a6EKAlmq0Do1Ga4Qum922xGR0mExGnRYYh95gtCObaZt9jx1daweDvdh+xI4r9HP0yKAv1h/RY90muANQL4AIgO16AL0dm3hNqQbpNaLpDfEPIjotwsPi0yK6R4S9hJTPTo8rrf/1SbZehIgISLSJ6GMR/lWE0+I5ET0twoMi7BHvEdGYCK1it7hOxKVivYhepnMdFh8VES+KIvqlquenX38zS+Ynox5SZ28l3VGpCG4RWNpwSHxYpAO5jSKsEKGdvkoyl06EN0TYL8J2EcrFdhEZxGIRHRWVe+/PXhThfRHeFuEVER4TfyiiIyIcEOEmETaLsEqEJSKkRagSQSe6RfQp7fqBiB4VnxNfEfERddZN4k0iahdXiahYjImyiMnzyLRviu+L6Hnx57Q3iOObhrNkItoDmURYr446Ih4TnxfpjBdF7QDppSxfnRWVxVdlm8WlIhKV+e3ZBwoPuEPEA6JSAQ6xTkSETRso0c6JH4tsjtIBAioJnhRPi++J+KhKeAK1iv3ZBG2FYyIcJORniOVEGvWez2jJ2jTI1EmZTQ3cY4eDtVjsWp0BjFTJ0Q/5jROlJlDJBSKiVI0Tr2j0ivBQjHrIY9T1uTKG9PnwEnWo1vw3kafYmi8MKISe4sLLBDm70k3xeHxg1ugSD6TWmkwWvvuKhNi+2On/9jKTGbiEtoup6nVqIGyAcKFYDPi6N5/eAjXZ/Oldv35jV/77bfDLkZ+9hTun3kfFRF04PjuELFN/wkOk7Jn6I3IRecRMfX4u/pAtZhqZdmY5M6l8N1YPuxL7E2hlJZRXpivbK7G+0lOJtpfuLUW8Q3SUOrCOdbPlLC4H8AAYAK7KoOJGi9HDsIixCTZkyyyJpJFisWcPLIHsEggsSSxBuTQwaSEdSGPUuCSdXtKI2J5ADzRZFL+ClGzyaDVUexiLkdW4lnYkE3NhbtDS4e+Id+DfBSEXHAyijmBHULMwV16SW6opxCes6bSaUhHO9NcKk4S4RA0nCaAbtbnIDXJrjL5A4YwwSSlPr5cDFpSKV7g1LhrCm4HfGh+WYRaNFwBRQzVOAdHZQTPMAiKgcaNSNUxENMep9PX3XRNoSVfqfx8e8/sbN913bVmXvwgcgUrP2985VbPzlW+MPbi+pjgxv9RWU+lHz7Q05X9SHnfUrVq4dKwjnH+3o2X+ooXN82D1ordyu7oqeI0OD8ceLL1u3rKbuis03GJLics8ftu8m4eU8Nxcpbe2OiZqgsnW8vwP4wlfR7mrOuIik6OhrVu3bt5Mfoi6TFK7SXwJidpN06zdtD9qf86O7dRu2lkBdEKGdTqcyOOctZtOZzQShdVRYKOOKLGbKvw8F2VzBGkmCNJEOQI2T0bPRz+Kcv4ojESPktpElI1Hoc7X6kM+piTDBIXgRPBskA2GOiWmxCkEO/1Ou9Pdxen/f+0meQua/7ftfBKIj+Ff1L3qH+wn8TvwXy3lleWW/9GIqqEHYG4gwvAq18RombRi0mqBG+d50LB6BihZzDpzFvgiVrtDgXHEE7B1xjOZboZ4LCm8WmtNxz1nCGfZabKGyGPwFz141dTfLqDU1AX8I9i99KKNXUOesY7Yvhi3mIkyNynd6z2w0wm7tDCkhV0a2IlhPYZdCIYQWPrM5mDfi6HXQihUzpTDSDnEy6FotYXzc4izDxyygEXP/iEIvw7CrUFoC24PoqB3QM19JSljNyf7Z7G+8Nv+yWT8Sr7nQpFqSNXZ6iM01mmfxXIzcQ9i4bEZ4/ij+b89u3btM6B79MBf1vK9Jc33r9j48Na5c0e+vX700URgNR+74davOfoev3j/k6B9rLvck//Rj2Pxpq/+68N3/eZrmbnl7+SPW30us2rzaUynl/hvUULb4PYS2G4EYrmj5SfKXyu/UI79Gb1nqWIftwjRyDLqik69rMZy1ej0qwTC0sVLl8OKdNnWQoj20rIbcG/R/CVdZXt/tLOxY/cj/SsOt2QrBH8kVhLtkCOuOUOd83dXpu0ldv2Cm5/edsvzO9NOc/7/fMdoNXBV/Xet67796pRgomt15Nvwh8Q/CaOg4nNboMgEpfp6PSrV1etQj2a9BnEapwa1csA9O/3R0zpjtpUgVFJUFpAyUQRZBkQNaDQ8YSUND138EjIpwa86s9uMzBrSCjoGtIxJMCG9SdJ53J5yDzZij9vNq7w2TYwY8FKp1CbtlV6WOFEtrpCGSPVh0vAHSceThjck/KsV0iF61UnlEvpUDXI8J71CgxywS9ovoU0StEuraGQDdJJbQuT+K9KbElIjI2oPGrFA5VJaapdwMe0FD74vfSqhtyV4VKJz4SMSDEnbyaOxpNx9KGuQ4E2JdsFnJCjEYQ5IQB60VI12xCX1Z6k0LB2QTkivSRck7ZhfapYGpN3SA9KL0u8kzeXitMRLyrUjWYpoFAk3jNOgSEBx0QopSDQOclSakM5LH0lajYp3RG9ZlhAx4st57CUmLQ+dBj2LLaplL6TdJ4klTVKzPqomgEbX0HgX+ZCfGUv8hYyRaqRpdyLMyXiSGH1qqYlQE3OdTNJ0fUw4LezTTtAUAvRfkRHiZi1vwRYXODSaSrp8QA1EA7yav60Ffj/y7k+3QLI1f2egZdmGhSXlkiTOjZnD7vKm2liRFw+r9vgTpFdt9HDXV9fPITzG/flmg7EiM5BiYPpD4t93cguJtbY+jTlALJV0onyEl2sSrjAkd90Jb3zVwa2i/Ltk+kP8A6JjGpk7lbq9jXBrAjRxV3xfHK8UNgg7BbwXQbSsvsggZOs9NcO+Az4o8/h8njKsY4YP2sFOqRwi6s5uT8/R53QHdUhX775B8XjM0fHw1mqNeauiH+cuZbU9vyD6muhCannVdEv/ZMH49hODnI5ZZ1MEcEWGG2Yz3HFINcyDQq6bZgmsl6LgxBrjH7TsfnZ7IdsdGGhoGVT8kXnLE9tGVi33JrMV9Qv9sZ5ItnNF7bt/CLZuzB5/GDavPnBNnZrztvkrO69XsmvlYqzZpeV37GzqnesN2n8MNTrBoHnwkebN3WmD8xFC0dD03zkv0ftGgp7SzG+V8vV1O+rQUHJ7cm8Sr4/viCON5JKiRMgqNczqaNRWs5oxKSYCKSihbiEybzLJFtkvx+Wl8m75gHxC1jTLA/KwfEFmaXuhslt+QH5N/p08LesbC31pzxfVFi2t0k4HSMNrZJy2MI6Oofc1WlnJdWc1tl5fpTCo0bj8A9xgELsGfAMlNJlH3oJ6uIC8g8naGcYfHZsxo4X8zQx+p6mEGFgp+e11paQkzrwMKFjSmcAX8X9mXKEw3uKqu0q+4+6mZQn7tbf+y2OJSmmx2Lyy3v3Z0sceQ3d8/X/tSlYtXtdwzYH+ynn7fvX1nR+uw39OX9XgyVeFmldPvXbrP02dJ+gMyjquy79QyBtWdI5kFly/LGXU13cPL+i5a6PMz2B8vBb/jCli7lPsBPtoCQKyg9YOnOAUENZSDWsi1Nbu0Zyjp4U8Hkr/SE1ddtADSPAonpwHD3pGPAc9Jz0TnrMenrFkKAZADhox94ay9KoU2cSsw9lZZLE4Om1OMzOtA52iGecF1aQTN7J2NldDkzVqqJxQsJ9wcWxgNlEjA7E+9GzGFS7IGc+S1etT9Y1ysHNxxvMvU6/eeCPcgd73drYl8o/eLBQHhamfXobsZL8ryH4fIXIaYq5VFK0VbjPAEA8ZvodH9TzY7KGQZ4tOuaCb1iFGJ+iQXWfXRYIJpKAcOohYpAvaxs1bXRoU3AH0zFS6IIqgHpxSvWIPATjxS/JXDql53JWSBgVJYzVB/Mhnj6+4a0dfUyCQaovO6yBylTvc++4Hpe3X33l8Hbrrh33//OXRXbevbFrd5PN4iAzZ3E8/krtl7PqdX12l7sU7/XvNeSJDDnSN8vP9FuixQKkFbjTfbkYRMzSYoMe4w0jzbj0GSBtgBQ8uPsqj2zhYxW3k0BwOtGwR2VI9hgyCerQCoSGAUgwMBiNrNGGwGKCL47leo8FhNBoQdJkt5l6MHBgjgVHIfiyARUu9BfFGMPGMkVgECzbynEZDnPNiFUZOPa8ibAMBswR3yuImcqFI9QORJ3frxD0EZuJC15+fVLuqkNI58RMKNwnOd4gRFcs/JHLqnSeffT5rEEEmOJeg2u88QkDu0W9n4/QRcGRahAIIxieuwLoQI7dIM4oQxLtO3Cay3eTnIYp4ZfUZZOimc3Qofb5cGHmMzMKyIgXJ+EmChCmap6P3zC5X/kCEc3TuTSLaIz4pIkXMiShGVwwEVaOEeFKcEM+LH80sPGyx0WWOW2CcUAszZjCbBQPDD9htWkwAGALOfhkqU6uq4mWaPo/1D8yi2lnoe8miziJgUiHCQ9MMn8szkILwsjUZLyDgonh8jZp1sib3XYlz1bNwlGmZNTPp+ivOaxQ+OgjrZkGvDpJgV0ub8mM35U/ln7op33oD6r0PfDDnyyBPPgqn2LcuarD82U/ZTz3t7Z7Pfo+Fz/6MvaSs8i4z/SHLEH/PzOSVeY1GaDSA6upJmhRVM0TAJD7FIw3v4tFKBBtgJyAMNOiE0RKd1qHTafWMqHuYmEl6vM5szTKUxlmDOYsZHaPDmGPNp81IbxaOCM8LbwuYFSJCq7BO2CNw7EzhIeJgvCdoGupI+TTt4SDN22gPNZhZGo5mLwpAe6FBARAjBARFyAmshtNrGdxp5Cw6QGp4o3D4EOKFqEZMNQWjwumZyAOhOnk1sySHJD3icgVZr3Rn8Av523bld1D35U9vEvcFr/js0Ezo4D+Qh1wJ7YrzP4FTUMW4mVqlhEi84RvMvzDEMR6xjduQzVbs4e/jHjE4j3gY4ePajwvH8vpP909NUk9KooYmNQ8TncSm6uopvoNTVVcf2ZxeEneKoWhI7F1YmmkIXpfZvbnH22etSdXZHcVOZ6A6Mr/VXZsltruV+DovcF2MnyDdDPMVZaUaPOT1oh7N2yLutcN+DHYsFk44bqljtIIWabcEAnWJOkST/igQSAQOBo4GTgY4sY60i7i9YstBIg92LG1bsCCe3lqsiW81FI5AqiY2rR6ELDg4o8TFoV9rOk14W4VY4OBV48nPhMkbKNIqhBjwF/OpX6zfd/3VqZXzQm//8e23g00r6tdel9rwzaFrDm+sn7JGm+PVcthsDsvV8eao1W/0J6OliRKDoSRRGk36jfgvW46EHUrP8IIfTfzwpZbhnvkO6d6Rpbesrqnpu2WqNLN5UTS6aHOmdWNGkjIb0Zn6vgWStKCvfk6fEgopfYW8+4f4NLFHESbFfEsZ3VEHt5YCF3aGUdQDGifUm9pMaJ8R2oyQMkLUCDdooU27QjukxQ1amDnktxfDPkSxXc3MqVKmTChDgbJE2cGyo2Uny7iysgZvzfBBPeirbggEpKKtimPcopFmTpkWDvDMJOdpkm6UEjee/FzQ5gpvshqIF2lTLZkKCFUcq6F1XyE6Uzg4QSmMT9dv+ubQyBM3Ksu/9ty6zgeUnlhgSUX1snnlfHLj3J4719XnV7U3emKNvupWyRFbAEc3PDgyZ8UxZvp7TwP/vVyRPf/aj4tK5u585ibRXXPNofzi++9fPtpabDRwX/3NPUsKZxdKiE1/i2tl9IyN2agoglWwWLdxvIPjeC3RBDAi2HgGCTM2nEPIYeWG2d3sAfYE+yLLsVYtZ9vOEJvGCxoeEatOBLpwiri2NkEtO631U6Tjqq0hMqz9skADg9agNZiietNJs5cNEMTd+b9MvY763tmb34zIdPlRuBV0+b+B7tv4G5/ddQb1euakk46pB4gMf4PJ40m2mzEwUcXdy0MRD2/ywPABPsEr/EGe488SF4lxx/tpXmhsrCahg6gOGnTg0oEGteSfvxZa8y9sgBZouzb/ArReS9peGII2aNlAq0P5F/I/GCrQp5Hw2NMqj9Uyu5Rlt9XAbUZIG6HMSOMgG7SwSj0CcRsCbyEvN1wZqExUHqw8WnmykrNV2irrpOGDDAwzu5kDRP4rCA8lCjzkTmzlNF/gIXpiOa0Ckf4rWcheEEiwOQtnmEvVY2AFxEbr1UhSRbIhJVD2aWza+tDQtmPD9T13v7Sx755MTyy8tire1VzOJ4bSPQfWp6HUVZ4OL+5Y2NOZxQ+tf2BTQ+67+fwTP87/7dtZ0Qk1P3aXJMee+orVkVp/79rOza1+mxmCEHmkQJMvTf8b3ktoYic6bFTJXJu4IYH+++POXNLhFJ0c+RctyZyv+qgKVaWkPiYqRFE0qYiiQxoPLq1gZw5BT706i83OUHGiYSCVGtakcKb2Uhz0i2ej7WHcoKrkL7qJyALww3BTpdtd2RSeOT9tWJ8eKG1N+oqSnQ2J9pLYqiVH+n7/75GOkUU9/3CkGr4Nabc+OLe/re2a5pIi248h6nA9cWrBjesWOYtmzi+yk8SHDDJblQVWR59d08fbyT+Xr88f7g5vC98TxkoYUCCcCCOLqxesVnHQ4nBYLKxrMOj3w0DQZh5kGRp6QQMspqEw+urphSLROL3UxilEoqZR+G2BHMIkaa1JNIOatKVBJYKKgg1JUgyqOInGw4Lh48fZ7asDgdVrul1nYcC/apU//62peVtWNlvSq+0X2wvIJn/sTZbHkHfck1/3jamLmFQ+yd9O9qYleuG/iI9RjEaUaU5MiQvF5SLLOVPOhc7lTrbCDjttt9mQ3lphnWPtsLJ6oUKYI3QIrF5Lk9+9WlavmaPp0PRqWImDHSxwWMIpvBCzHJJQCi1ELOfmjQ6DiTV53LzdQQ8JGsnFwZEqwwosstj8NqTjoYs0drp5h9vN26CLNbFLim2O4mIbb+CMZLC92GbrMIHJy44UQ7FjoRtoxt3g7vZCwgsOb8SLjnl/7v3Ai+/xQsy7yItYL3zsBYM35pVJ9Q7vMXJT8xvSNOE960X3eJ/0ok2FkXVeTJqVkZ97odu7zbuH3GINdArSQCuITrLJix/ZpE6CWy8/k/a+x/uxl815AVm88DvvBS8KeHPek15Mqts/8sIB7wPeE16skEak3ma8gheRG17qQdlX9WWHCz1oe8CLW7w0i1fSND8b8NJB496D3gkvr5DCUVI47+W86kmruVn1WlOvXhV/eXXW7yWQB9w2k6PT7jFyLAii08CzxZ1asFz+6w9XWvXEqDNMvWHqFV9yhNWQ1KzjfCl3tOZSWXXfki+P1grv9NdaCaPS/y/Xfs5TBtJ938SEoP7XTmhnfr+QKLJTj87VMOMsq3g1qlEvOvDDXzfuf2oNKFflP4GK3rx+40NvrclPdENl/s940/z5xb963T1/vjP/s3y9c/5819Q0+RVgEL6lnq8kfnOAu5OY+QrmXiW6MwJ7A7DHDy5/1I84P9xK0FsIdKEM9QQCzAgzznA21TWu0ZuyDFPJVAJTKRAFj+Vc5dlKlKhUKnOVI6qun6jUOHUZSwVcqJiuQBV0lFVnzlYYl0bFIi7nFayddkZ1ypKFc5Wjk//TucrZw5MzcQ71kAY/m0+YiUmhi57a9urSXm9geVl9R9wxtXsQbuE4sSnTEd54z0BleuyxbYP/dSv8iR5osVqnarTa+o334u+65ue/K21I2EqchvS2kzvHfrh/cdRL5D3AMFwD0WVOZkBp0Q7oDhBwYO9Fppxx3HjU+BGBtAIChEQX4xJcCZfiYgPkJ+cacY27DromXB+5tDY8aNLpsR0NMLbCX0TRvyUqnD/pf6f/jDBFfmoSNPwwo6lV7QVEe7mIs/Z68iv3SsWrOVdfsfTY9prXiYIaNmo/hR35/Z9q9RfvLm6n7/Bq9O/oNeI/25kos1AJ6WxuW7kN80bRWGrEnNaplbRYh9yoHOHwcb37uPr6DAYhy/getzge51iysnco/SfPzRgU+xePT13h4FKrcnWie3S+MtZdU9M9pswf7U5Aqqwt6fUm28oqCle2+MrbpDto/fXtsfJsfSBQny2Ptdf7Vdz2TdwH9xMaY6bkOQZPf6IYLPYsMJSwQJT/GeKuEPrE7EEc/iagzg1cU97PFHIwPBB7W8O8pSzeLsH2CKyPwDNh2O6HG0wwZKLZifVG2K6F9VrYyoPYN+0Ep5PpZWJC7GDsbIzVxWJJJTmSnEhiSxKEZCA5mMRJSpvcsp7siSQcTMJAEphkgnTDjSeT55MfJfFryekkYpK55HjyYJJ9IAk5MmyETuFPIm1wtUXvJx5PTeVAdXVZyYBoYcsGKAyfbD49+5dDlK9VMK1CYoqvCyc4a+P9n89rFpIll7M8PvS5fAmrHtVRVQJ385wD934z+0D+ry9u2vAS2L/Xc+BLWxp7i8LdA+tTQw/d0ByZt3ztdXXpbYnj6LqvtNmDReaeY5995yRoTvSYi/xC/hePF1X4ren9/35s2+Pjy2uddgH2eDo6POo7WkiY7DfkHRmYBUoV08txRtN5EwRMCZNiGjFNmLhx00lywQMmoE3IwA9oMcMN4ALLU4Yn+1XP633ukJ5TgyqPT20+fhzdfXwdfRp7A/37N4b5v0umsSEAeJxjYGRgYGAUfL1xw/pd8fw2XxnkORhA4OLt/UEMUPD/zT8b9gesixgYGTgYmEAiAIhvDQoAAAB4nGNgZGBgV/znysDAwQAFjAyowBgAK88BqQAAeJwtjisOAkEQRCuzn6zDrAIm/AwGtQnDGAQBHCuArEASbkBwXIFgEUjUXoTL7B3gDUFUXlenu7pNo2UsvZK3ciOJuoQHuE1ruaTSKLKa4xfxWW3jNY5uWv/marXwE/p71EM75OgPyEuZmeILeMGf/nu58Z8Gbsge0nPUVSZZKG53YPgpzHbjux5whq7hF5iFP6j7UaEj95+pJ9tq9QWeexv9AAAAAAAsAF4A5gDmAUYBhgH6A94EGATCBWYF/AZCBrQHMgg8CKYJPAnCCkwK3AsyDPoN6A5+DrAPLA+CEMwQ4hF6Ej4SthMcFHoVGBVYFf4WoBb6FzAXuhg+GKwaFhqkGvgbVhtyHCgcYgABAAAAMwBWAAMAAAAAAAIAEAAvAFoAAAP/BOwAAwACeJydkLFuwjAURa8hoFaVOnap1HrqUgUBA0MHJBBCCAGKBMoOJAFLIUYGBqSO3fsfHTrwFf2UfkZvEpdOZYgt2+fdd9+zbAC3+IRAPh65cha4Z5RzCQ5eLJfxjLZlhx5luYIbvFmuUn+nUzjXjNr4sCzQwrflEq7Eg+UyfPFk2UFLvFqu4E6cLFepf020XOrt0ajVei9VEmmzme+VTmSkD0lQ63bS4Y7UIjSZPg2NityujoN0Db0wmMfS6/Wbg9l4JC/Z/0/5odmlVzZq9QsuTKAhseS+xRGG/7TCGntqCgki6gYbzKkockI91Q6kADV00TlPFyN6FghZ8eefZrFilUu3Rsy633MIj9mA7ph9PfTQRxMDzDBmL1m4e5EqP9N251c2+Lp6sV4/eX9/wQAAAHicY2BmAIP/igyHGbAAACtbAecAeJwdUEFvEkEUnjdTitU0gxpJjSWvxnhxE6muntlwAFIioDhJuyWwmp5dklnOEA1JD7bgocqtBy8cjCwBAych/AWuRRr/QD0jcZ1lkm/yfe/N983LM55s/L58jnN9Jn7pF2J3lpvVZu5sbQZMXLAw2lMoTa+mNDuF2ARwMp/QoTc2vo6vbyZyI2tUHrGfyUdIhhAdlAaNQWcwHwTsv4CLqwW1F9UFNRZg/wDexz61+4C9bM/rse/f4sjb1TbttKHchlgbQq2d1m6LlVvw5fM2Rs9iZ/RT/Qg7p/Axi0jqVp0269D8AO+VDFV2KtSxPJQlD8vqf1vhXdLDu/qWCOpMrDMP/Tk7/x7rifFbuHwDVukZlpQXl9Hl+ZJ1lkCKYBQ3NhPVQqNwXmCHpoZRE4hpmbRp/jEpmnBbvyUCahVrKpMzZDGWZTZrsPVr+b37mFNxdqaaaWTYi+QD3EvuIE+BkbrBEwk1EE9ikm6n7omwfkfcBC5COhcUiACdiCj3OOW8xKuccRIjtBaGAAyh2X2d17T0MOi9SrvB3KELx+7DvH8bL013/dglwjzc7wKcHtRPTkg8knaf5vddK3KQdo8UMXxSUyQU6YZJ/EBKR1sdkJrmaERBK8qVlk5FKUc6RNOkXL1RUMIBpVVValIxh0g/RIJ0fCKJVH0ifTiqVvHdvnWr+B9w476BAA==) format("woff"); } @font-face { font-family: CAAAAA-DejaVuSans1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAA1gAA0AAAAAEqwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgErEQYmNtYXAAAAFcAAAAcwAAAcIKtRTlY3Z0IAAAAdAAAAGVAAAB/gBpHTlmcGdtAAADaAAAAIAAAACrcTR2amdseWYAAAPoAAAEJQAABJBcu697aGVhZAAACBAAAAAwAAAANjNtduloaGVhAAAIQAAAABsAAAAkB28DEmhtdHgAAAhcAAAAIAAAACAd5AQDbG9jYQAACHwAAAASAAAAEgX0BNptYXhwAAAIkAAAACAAAAAgBEAC3W5hbWUAAAiwAAABHQAAAjfkc4SbcG9zdAAACdAAAAATAAAAIP+BAFpwcmVwAAAJ5AAAA3sAAAVoOwfxAHicY2BmYGCcwMDKwMBkxWTFwIBOM8IBAzbgACJYu0Akey7jY0wFANXXBDMAeJxjYGBgZoBgGQZGBhDYA+SBWDkMLAwBQJqPgYOBiYGNQZMhmSEVKFry/+///0BxDSi/GML/v+j/vP8zwGYxAvVAABeYZGRgB5tAbfMYGNlAPCZmFlY2dgYCgJGgCpyAFRw+QMACoZjYyDaK+gAAcDojnQB4nCVQLUhDURT+zj3nvQcGEVkVg0lkGIbIsBrEYBjDZBiGFyxDhogMWZAhBnlBEBkiIjJkwSALQywiIvJ4aSyIQQwigohBFsXvTQ73cu937/l+jsygg5h1ixaOpclbCGCdyKm7Qh0bRO4klj2XJdbEN7r8uYtYWwZZRI4o8OQ5/EgRbXLkJSP5wDfYkrWtYB17twSzVrHESlaRnJ55y16TK6/3bhSPGEdHXlDBtX5oTm9s3obxoom28EYVI3+MCOeo0ktGyqi5qisQefASNFhlvidyIl26u5Yd9HCk5hZwIj3mitHHjhZdDdCcC+n/gVwJ+xuoGLyeDOHXTRGje2qtDvYxzXq9QX2jRuUizv2OnwkmqJJOrCl38ukf4BRdXdF1fZa6TdiFLSD6n4CWEJG7kfb4oWwxe1rVlN1tWkla+LBSsEru+zQRNduuwEQhbrg2/RFmmpO67tFp+jqGJFi0afaTIdhmaqCsM1jjqYpLXCGrh4jINMjrz3p9dh7bKzNHsu/6SHQekwjti7NGBjj8A6zngz4AAAB4nNvOzsbKwszEyKCjILCBSdUzZYNDYITCiUhFXR00roIAu8IGhoANvJUKO/7/D4hgkWaN3MAqs4FZlWMDi6ryQ1ySD3V1vAMiFDb8dXWBmuqa4AIUC44AMkE8oDBQ3NUFLAeydAOrKhB5JmxQSM5Q6BLoUrbqEki10gUAqi8yYHicRZNbSBxXGMe/M3dndmdnZme8je66rpcdte5GXS9RskOLoUUqtlqIgm2aUh96YU3zUIoPBsVVqZA8RE1DY5eg0DTBigmN0iY06VafLKHY0oeWSNXuQ6YisqEt2Yw9u0XKORwOBw7f9/9/vz8QMGDPUAP0PJDAQqHpoJ4C8xRx9DBBQTCxaR0DadPatEJu2SeX+2TfAAXpc6Se3rVnWPHvgw8YAxAs2QfEEKOAE5pMF3MZZkUnC6TCgJsXpV87ltw9p1aBP/y2ubdjyZW9g9ncu1NnyS0tuEDaCiGG0FQlz19BhBuUJmIoNjI6Fp+ZvjTLKH/YJ5JJu3X3MVrbeoQSFq4XPdwm16khqISk2eZ0EKLQ7fVwOQTLd3u9nud5weOlNIihSUqNaZP5qzK1Wr4iTwU8vODVWXhV50SWU0vbA1I6gcXtyEpLS7aTnZQl2U/2pCd7Sl5LqKP7FCuJf8p5LWz27C1dhkqE+s33i/giochRm1PD1wg1jtacVr5VaHUIJVCCyogAHxCq3EE1qFXlBjwBr1Fi+MoqY3xMiDliTgUAEEEwPCOQDtJJiqSLlMgCspDUySKqOKcyaESMN4xh47xx0Ygb+0Z+P/SfRVot8pcymprrRR6kqYy/tKIy7EH1dY3hhoogqkXhhsb6ulzy487P+yYnz1yKJBb++qXvu/cG1t4cmXr7hnnj8tYPA7epyGIg0NNjvuQTqz6Z/PQrv/9eONz7SkdXuatsemTupgc3BwScPdymhrG/KugwaJaBhnJi3AStXUf0qgN9nb+qrDiminSN4DQOOgjF1V6Eh5iyEtjI/1zckfbwSu3hh5BpRIoHi+PFD4v3i+kIRFCEiGgRna5hg1wQWxiFKIoSUS2q52Ch/UjzZXU1aSLyl4AsQX0dsFn5LDWcXnZs3Hln/cxbD9+1U/Y6MtK/I3aFWJi4sioSr/fdW29oWKyqQc2IR270gv1bYvb24hx2HO7j4yNGxZyX3oFZAnFwksJNH4OgFTKdEm3SXfRpepDepxnU766X/fdXVhj1HyvzF/tBJrEfBRAxdczVBCXGnBN8hqs8zFUhqzjhRbW9UEpjpo8wSmUwCpmCS5f08/pFPa7TGXFHczxSWJpR6MOTS3Ze7bq1tnar62rnywv9z+yf0XOIee0aFb5ZXb29sbFdXf1FWRk6gUSkoOP+DEXQhId1QM+BG5rNApHmXOR1kNE33Dgv4DRQwEmKeFKV0m0JvOsyhAetVFvCqsO5Cy1/qWGWkezTfLKa24o0jFRY9ofrZfQhGrLHOs7dvfvTtfFxes5+cOFZfLLzymc/EqcvoBOQrT2PMx/NZt5ruthM5lkEgkK5OcCZb0v9n213fa6iqQTrb1TCDcQ8jvX0THxsdJRRLLvt0ZZ9/PEu+j6ZRA8A/gX0oklUAAAAeJxjYGRgYGAKqdq4Yf2ueH6brwzyHAwgcH73jRMMcPBvGks9mwiQAZFkAABkNwrFeJxjYGRgYM/9J8vAwPKGAQIYGVABBwBG9AKKAATNAGYDHwCwBCsAbwTsAHECOQDBBGYAcQMjADcDHwCkAAAAIgBaAQoBdAGSAd4CHAJIAAAAAQAAAAgAKAACAAAAAAACABAAmQAIAAAEFQIWAAgABHichY/LTsJAGIVPoSVRExM3bq3sqYXErQlCCCFAKpDuG3phCJ0hvSxY+z6+g8/i2nfw1I5uuuhMpvPN95/+mQFwiw8YqMcDV80G7niquQMLruYuHvGs2WTG12zhBonmHn3GpGFe8fSCd80G+vjU3ME1vjR38YpvzSb6xpNmC/fGm+YefbJW9l6dL5lIDoUtZKyyNCiEknasShk6k3E1BtPoGPjlNpD5RqWBXHhRGJxsbzobzXerpd1INYQfZXnVdei4jRrWULCx5/eMC58p+OwDCjoBiZg+Q4qARpAlfeVKUggHE4z/5wBTRDgy67O+5S6RY8N0+ssLeKyH5BO7eEzPMMIcO6ywpGnv1Z7w6TLuf3cd8o5u+38/A/lhOQAAAHicY2BmAIP/dQxRDFgAACsZAdsAeJzVkvlTlWUUx4UPp4S78N7LBSWQonoVIUBvCYagl2tFQFqGptbQtLxt1rTvdo00UHEBU19L1EzbFNsTsNu+OFPa5jbti2J72b68zRx6/oJ+bTq/fc/5nHnO9ztPX2pLbOBvxYvwl82fUf5w+T3Ib8qvyi82Pwf5yeVHm0PttXJI+cHle5fvPL71+Eb5uoqv4nypfBHlYH+THHTpN2B/Ewf2l8sBj/3lfK58pnwa5ZMIH7t8pHwY5oME7yd5T9ln8H0J9u6pk70J9tSxe1ee7FZ25fGu8o7ytvKW8qbLzh0FslPZUcAbUV5XtreGZHs+r+XwqvKK8rLykvKi8oLyvPKc8qySVJ4Jsa3Nlm1KX29S+pTenmbpTdLbktaz1Zae5tgAPbG0rTZPK0+5PKk8oTyuPKY86vBIkC3dtmxx6N4clm6bzWE2maM3eTysPKQ8qDwQ5n5l44agbIyyIch9DusNst7lXmXdWr+sU9b6WdOVK2sculZb0pXLaot7MrhbWeUGZJXiBlhplla6rFgelBVFLA9yl8eyzqQsUzo7mqUzSWdLWsdSWzqa6YilLbVZoixeVCaLlUVltBub7bUsXOCThREW+JhvGvMd2kxSbTatIe5U5s0NyTxlbog7lBbldiU2MCeRkDlKIsFtDrOnZstsm1uVW5Sbg9zk58YMblCu97jO41qPazyuVq5SrlSuKORyZVYoLrOauEy5NMElRlysXKQ4yoXKBcr5VZznca6fZuUc5Wxl5owMmekxI4PpObkyPcpZyjTz8rQ4U7NpSrGkaShnRpjSkCVTlDN8nK5MnmTJZGWSxWlKo5k0Kg31ljRkUT8sIPUWpwaoU05xOdnlJGViaqlM9IgnqW0kpkxQxteEZXyEmupMqQlTPS4g1bGBTMYFqFJOVMZWRmSsR2WFJZURKsb4pMJijI8TCjg+QHS0T6LKaB+jyn0yKkC5j7LSdCmzKE3nuCglxbaUOBSPDEuxzcgwRSNsKaplhM1w2yfDM7F9HKscoxydSaHxWRjmKIcjPQqMhQKHYQHyTYL5Sp7HEXFyjchVhjoMMUkNUXLMUk4u2UpEyVLCBggrIeM1FMdKkOkQVAL+HAkofkP7c/ApGRbpymCDDVYOj3CYQ5oZppkfkI3poqQanVpKisUgJaUvxWldklLyf6hB//UB/1rD/gERC48YAA==) format("woff"); } 1 A 0.500 mL sample of a liquid is found to weigh 7.77 g. Calculate the density of the liquid in units of g/cm 3 and g/mL. Be sure to answer all parts. g/mL g/cm 3 2 What volume, in liters, will 8.64 × 10 2 g of air occupy if the density of air is 1.29 g/L? Express your answer in scientific notation. Enter your answer in the provided box. ×10 L 3 The density of methanol at 20 ° C is 0.791 g/mL. What is the volume of a 42.5 g sample of methanol? Enter your answer in the provided box. mL 4 The specific gravity of a patient's urine sample was measured to be 1.027. Given that the density of water is 1.000 g/mL at 4 ° C, what is the density of the urine sample at 4 ° C? Enter your answer in the provided box. g/mL 5 The density of mercury is 13.6 g/mL. If a sample of mercury weighs 879 g, what is the volume of the sample in mL? Enter your answer in the provided box. mL (select) var isIE = false; var f1 = [['t2_1',1790],['t3_1',253],['t5_1',746],['ta_1',531],['tf_1',713],['tg_1',181],['th_1',259],['ti_1',1343],['tm_1',582],['to_1',75],['tp_1',706],['tq_1',314],['ts_1',770],['tv_1',1438],['tw_1',208],['tx_1',428],['ty_1',301],['t10_1',893],['t13_1',215],['t14_1',544],['t17_1',1673],['t18_1',1350]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed