1 Find the term of a loan of 7200 at 3 5 if the simple interest is 1 764 Discuss situations where a bank would give out a simple interest loan
Find the term of a loan of at if the simple interest is Discuss situations where a bank would give
Find the term of a loan of at if the simple interest is Discuss situations
loan of at if the simple interest is Discuss situations where a bank would give out a simple interest loan
Find the term of a loan of at if the simple interest
is Discuss situations where a bank would give out a simple interest loan
Find the term of a loan of at if the
Find the term of a
1. Find the term of a loan of $7200 at 3.5% if the simple interest is $1,764. Discuss situations where a bank would give out a simple interest loan?

Category: General
Words: 825
Amount: $25
Writer: 1

Paper instructions

Please help assist me with this Finite Analysis math problem. Thanks for the help ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:75px;} #t2_1{left:76px;top:98px;} #t3_1{left:76px;top:112px;} .s1_1{ FONT-SIZE: 46px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } .s2_1{ FONT-SIZE: 46px; FONT-FAMILY: CAAAAA-LiberationSerif1; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAAsEAA0AAAAAEwgAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAAASAAAAYIEhgK/Y3Z0IAAAAaAAAAAuAAAAOCX+AcJmcGdtAAAB0AAABRIAAAp127YujGdseWYAAAbkAAAB3QAAAkLDVwGuaGVhZAAACMQAAAAxAAAANq1cQWtoaGVhAAAI+AAAABsAAAAkBgIDcGhtdHgAAAkUAAAAFAAAABQRWQHObG9jYQAACSgAAAAMAAAADAHLArFtYXhwAAAJNAAAACAAAAAgAb8LLG5hbWUAAAlUAAABFgAAAhOXL44TcG9zdAAACmwAAAATAAAAIP+cAMJwcmVwAAAKgAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nGNgYGBmgGAZBkYGEKgB8kAsHwYWBgMgzQGETEBaj8Hw/9///xGs/1f+X4CqhQBS1TMwsoEIJgbiAVAtI2FVQwkAALYcGjl4nGNgQANbGTpBmFWJgYG1nfkSA8O/bezz/t5iNfz/Cch/+P/Tv4UgPgAbphHYAAB4nK1VaXfTRhSVvCSOk7S0WSioy5iJA7VGJmzBgElTKbYL6eJAaCXoImfrynd+g37NU2jP6Ud+Wu8dO2YzbU9Pc3L87jxdzXvvzpsncYyo9CgQ16gDJc/6Ulp9KKXOo7ima14WK+n345psJp6SFlErSZTMdgYHcoHL2Y6SNYI1Mp71Y3WksmygpNqPU3gUn1WJ1onWUy9NksQTx08SLU4/PkySQApGYZ9SfYAUylE/lrIOZUqHXq2WiJsGUjQa+aiDvLwXKj45nnULjRpgpDKVYbt8rVzPduK07w3uJbFO8GzzfowHHrMfhQqkZGQ68o+dghOlYSBlLHWolTg6HEhh70jcfQSUUiOQKaOYVaGz/2fJ2VPcQTbThJR0y2Y1PWQ4vs4rpXqqOpkeUEVbtONRGFEewp/El2JdD7aGL1dMXi53xB1sBTJj4FJKZqK7JALoMJEqV/ewqmIVSNUoOWUzVEhoH7FkNkpVluI8UEMgs2Z7N86n3a1kReYP9ZNA5sz2Trx9f+j0avAvWP+8yZ256EGcz81FyCCUqp+IE0mhHuYz/KniR9xlCFOs9+PchVo4njCD1gg706hpvHaCveFzvlKoW0+CSnrIvwfvy8q9Qc/ccRY0dInE2Th2XdcezlvIstzZjR2Z06FKEfGP+XnXmXXCMEvz+bIvj33vHJR5G8S3/EBOmdylfcfkBdp3TV6kXTB5iXYRktMumXyKdtnk07SnTV6hfc/kM7RnjFT8fxn7LGKfwTseYtO+j9i0HyA27YeITfsRYtMqxKatITbtOcSm1YhNu2JU2/ZH3SDsfKoiSJ1GVlk05kqjFsiqkbovdfToeXRgT71BVD1oaZU9iP+Wga4I5MJYaXdZzjfEXVqzxX38ohAvP2oYdc3m6RtHihM2x7WYGJR+Z/l3h39bG7qVN9wlVGJQNxKdnCd6c9AKJDDN0+1Amv9ERR/tg34RR+Es11VT9Xi/IeGdLOvpHi5pvOdxsmCONF13aRHx1wyyQo/j31JkquMfZk2tVDvDXpeeP1bN4R5S4pDq+EpSXtnNnfhpQRWV97SwWjybhJwqFUwnbdm6iwsUvXobUg6P4bwsROmBlmI0OMDjQjTwgFMOjFffGSAlDGndxdlpROiiLhgbBftNCKLtiMKTlNqX0Ujl13bFjqyobpPALyaYp2vJ81g48svUQMFTXh1poNuQ5op1SwX3RKmu7jEYT+uqlYwFjBR1duOmauOzwoxHTsVcxpLXsbozbPXOvh6e0qS2HR2LZu9eG4WPTs4l5Qft1fpOznHdaNWkZF0M1nbSzFfdRdy662N3/0V362X2RM4NI2v+xE1vGrnkZwjMTkG2r3NwJk1ZBfXWuL1OpGVnafR5EzdkuF3b8CsT/oc+7P1frcf0OVTaGnPjhcOuJaMcb1OMk/o3WH9NjwQY1TEu+ROUvDS8mccOL+FCUwwu4uYb/J9iRrmLCxIAh0YuwkRUrQNdVRefohOdtgx7USLAjjl2nDZAF8Al6Jlj13o+A7CeO+TcBrhLDsE2OQSfk0PwBTk3AL4kh+Arcgj65BDskHML4B45BPfJIdglh+ABORsAX5ND8A05BDE5BAk5NwEekkPwiByCb8kh+M7I5bHM33Mh60A/WHQdKLX9hEULi4GRK2P2HheWvW8R2QcWkXpo5OqYesSFpf5oEak/WUTqz0aujam/cGGpv1pE6m8WkfrY+FI5lOJK/wm/H8Ff4wH4MwAAeJxlkD1v01AUhs+599qOaZ3kEjuNQ1xwnPiGOKY0iRMyNHLTRAK1ldpmIXSgUipgYGHqhOhUZWTlR4CgEhMrf4KJlRHWtiFcokiV4EhnOB/P+XiBQQBAvynPoQwd2IBNmHwGJIC97Y939h7HTaAECcUXgIwgewYAhAI5BAZKgimHoOvqPqhqcgsSCW0fNM3Q+rfi+r+YCjqo+ug//BoaxcZmzLlZ8b1qoXQjF2S6tFFfJZaZZCn0hN9lUdP3ikniFUWm2SWLogzvEXS525b+K/egt1PbOH4onKC55jJ+YrB8EIW3By3REvkle/lp2hErWVHgvCCyK8JJ/35PP1wd1Ong6gvbtcpOutgdtaKdTrVcyh6/ctfv+mFb3O9wi1tTO1txOHcqEpwPYOOLdxGbyq8QPkkdzxUfUuDGqzqTEmJP+vIWQVk5AEoN2ufcTrNMIE9ttjXVX0Ns8IblzpDT77lQj/DN5GK6e0pPRPWraRiPcHj55FSOn83gbPYTX8MP8IDCmVxIpYb5yyO4GafkGhjKLgv6lTIpBPN7rk07V1AZHPXXZfYle4tjZQKZOSf7hhJOSq5EeIALNaOFujg2vdC2a65pujXbDj1TWbLDv1Fo58OiaRZD+AOADlSMAAAAeJxjYGRgYGCUitu4Yf2ueH6brwzSHAwg4BV8ZxYDHPz/wHyTtQPIYGNgAvEBQmwKegAAAHicY2BkYGBj+MfAwMCaxQABjAyogBUAKb0BewAEDgArBA4AsQIFAIYFagAAAc4AbAAAAKQA1ADsAPcBIQABAAAABQBCAAQAFQACAAIAUABdAG4AAADwCnUABQABeJx9kN1qwjAYht9qK2yDHW4nMnMDLepOx8AfxIlKEfFwEGyrgTaRWBne1M52ITvezewtBsGTpiQ8eb43H2kAPOIbHi6jw3lhj77juIEAoeMmXtB37DMTOw7wgE/HLXrFpOffcfeOL8ce2vhx3MA9fh038YY/xz7a3rPjAE/eq+MW/cfSiK05nK3a7UuhdGZsIUtltMjMSSfRcFCNcCRtrkqzMoXUszhNZC7i8aQ/XS/m4jZyu9uk9lg160Xd2wKWMBDYcj3gDMuf22GPkk5BI6O3KCBpFFnTV+5EShBhiMH1CzFiziJnsmRmxVmd1JjxKVPmJWuCPMaEDz3FGgvMaeq61NU27GpxvN6sxxt16078A4cLWC8AAHicY2BmAIP/MxkOMWABADYOAl4AS7gAyFJYsQEBjlm5CAAIAGMgsAEjRLADI3CwF0UgILAoYGYgilVYsAIlYbABRWMjYrACI0SyCwEGKrIMBgYqshQGBipZsgQoCUVSRLIMCAcqsQYBRLEkAYhRWLBAiFixBgNEsSYBiFFYuAQAiFixBgFEWVlZWbgB/4WwBI2xBQBEAAAA) format("woff"); } @font-face { font-family: CAAAAA-LiberationSerif1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAC7EAA0AAAAAQWQAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgEiAP0WNtYXAAAAFcAAAA9wAAAo5Khi1/Y3Z0IAAAAlQAAAERAAACFj5CQPpmcGdtAAADaAAABDcAAAcFc9MjsGdseWYAAAegAAAijgAALgyLbSdkaGVhZAAAKjAAAAAyAAAANjdzGkxoaGVhAAAqZAAAABsAAAAkByMFFmhtdHgAACqAAAAAcgAAAJiPIAmgbG9jYQAAKvQAAABOAAAATtEYxXJtYXhwAAArRAAAACAAAAAgBKQGxm5hbWUAACtkAAABIQAAAnM7PjCocG9zdAAALIgAAAATAAAAIP8kAGRwcmVwAAAsnAAAAiYAAAJ0QJtZwnicY2BmYGCcwMDKwMCkzKTMwIBOM8IBAzbgACJY00AkuyLjbkwFAJ/fAxEAeJzVkTtOw0AQhj/Hju34ETt2HMex40ecdAjRQUeDuAclokE0XIET0XALOg5ASm6AlvGjDC0SI+3s7PwzO592AZ1hFWji0V7k1EXvGLzKviGUjEPNgTPOueSaG26555Fn9a2U1NTse+1i1O544KnT1CeoL3UUf1Qf6o3BhgnrPl6NuVL6r/ookFxExoJYqBJyIfBppMLAxqPFYsKOuVDpuHLPjBSTSijqf0qNZnaPP9GNqWnZM8f1/HkQLqJ4mazSdbbJi21ZTZtdG4yTNyyJskVcJHk4shw6tx2+8bT5TWnYXmsJx9zRXUFIzWpf/97wt/YDP1FASQB4nGPtZRBl8GC1ZeBnKACTKIB5DYMkiP7/BpX85/P/FwMVAQeEmsGwjGELQy/DTYZYqIQbQwBDJkMpUAQZHGS4CBQFgQCGKIZVDF04jF3DsAMoD1GXwNDPMBOHugCG6QybGY6j2BLAkMtQDXTLVoabjIYMJxkYGPMZPjFyMDQyHAWa+gko5ovNKCY+IJEGZqYhid5mmM3UzeDF9ATImQmSYdJnEmA4wjCHMQ5ocgnQn71wH9tgGNrOUAskgxkyGMqAbDBgtf1zi4Hz/2egr2oZvBiaGBwZcpB07GGcz8wFjL8QhvnAMD0IFtOHSbJ7MGcxbWNi+jsZyJnIkA7EiYxAvzP1MjsyuLAKMm4BAGVWQ3wAAAB4nHVUTVMbRxCdXQmh8JUVIZSq9uDZjKVASYqcspMAUWCj3VlLUZwgJFfNkhx2QaJETpx8oJIqbqEG57/0OheRk/9A/oMPOYYjvjo9oxUGqqJaSdOvu1/PvO5Zl4fieb+319398Ydn33e+a7eeBtz3mt+6O9vfNL7e2tz46ssvPn9U/6xWXfu0XHrIPnEeFFcK1odLi/NzH+RnczPZjGmQKmdBRKEcQbbMWq2aslmMQHwLiIAiFNyNARrpMHo30sXIo3uR7iTSvYk0LNogjVqVckbhb5/RsbHfFbj+w2chhSu9fqbX2bI2FtFwHMygvDjyKRgR5RC8GEke+ciXzM95zBvO1aokmZvH5TyuYI2dJMbatqEX5hrfSkySX1RlIVPi8QB2u4L7tuOEtWoblpivXcTTlJDzYFZT0mO1dXJBk+pr+XJskYOosjBgg/hnAZkYc2WGS/k7FCqwznxYP/2niCcfQpX5HCqKtbN3U6fzvqQBMyWLUXlN8Djs6t+7SJwiuZJ1TdQyQHmlDBgNZCTj8buzA0YtJpOFBXnCUWGyKzBr/O6vCxuClyFY0cjYSg8b7HXgo+5PAsxSQEcxIvjsMGfDdgrhNGb3/9wEhUA5UFPHUQe/GLvkAA0464qJTcmB/Yq49UoIZqQ8r6eej58rz9nUc5MeMexmpyckZEvtAeOo8UUMZwc4T7+oVjALlt7aDpPLBbpZD3UsxV21B8cUZsooC2bdTsBJUSnS0sbS28nflY0FyoVlusmQRvFwxqP0eTEqIgGtVaFVmbS+L8D1ceHGaY948qiOGXGELTr2dfugzk5ghTVv+qm2xY97QqekabDiAYkO0yyoc19VplxG/mQLiot1xSV5/O5N8oTafz4mT0joq+BVD+eqzKUYHMGDyB7gTTuiwnbADbHBIRPDUA0aKrT+Bss5uiKYXl90eqzT3Rcb6UYmDkWXLfF7NEzYExocOciX8lSYdibEQAsBGuCCNRv4C7OlPH4tFFyjalSbDSoMm0yjcRuwTvnQT+OUfYd0Ro2T15qy5ZSJPF7LdkJn8qlVTXTTtDBm5JWorakrU8I3AWIm0mhIaVlUM08FG7KQjSi4u0KdTcmjVU7F0JqnverfsW6JhTIRB91TQ4kJQcW+LS481faN2brnbk/dVOZZpycVOUsJCe68DUSNsLtRsPXtV/eZBTFeYrzR+j7LxHXVXR6paytZeyBZTzR0NL5BfrNPVa1l0jE6/Watii+zZsKM827iGue9fXFpEULP++KVaZhe1AyTh+gTl5QQV6OmQhWoDKoMxbSHRl7H25cuIWfam9WAtg/HBtFYfooZ5HBsTjBripmIZSeYqzH1wS4VR6gxvr85Haj+/BqOZBSqGSerqAg+BhhsG9Vh24lh5hZgjg2bMM+aCt9R+M4Ezyl8FifDWDVq1VNpcXZdrP0HdvDztwB4nIV6C3xU1bnv+tbae96PPe9MZpKZyc5kkpkkk8xk50FgZwMh2RAeAwQE0iERAyoUkvCUWg9REVSk0IoWxUfkpNaKvUagiOWeEnvw/NqfRekttfZqlbZY26uxnF6ut6eYyV1rT4Joe86dX7L32mutvfda3/f/vu//rbURRq0I4V5+GSJIj6pfApScflzPGcZSL+n4d6cfJ5gW0UuEVfOs+rheZ/xs+nFg9WlHxBGNOCKtOJwrhcO52/hlfzvWyp1HCAFqRoir4GegQvRbZZ7HGrVKVuKxRC2Shfg9czzLPJh4fD4wm8FgDm4N7g4eCpKeILQGO4P4chAuBKGTVp8MngtyShBKg3VBPBKE4OmJUcUlz1FRUAiGg6SZo/cNB4lW39wwTR0NAuvnhlUZ3SUd1rV4wetFPe4aP/j9SXe3u89N3G6dq8eILGCx6LuNBHTdnBO1jKVaxtLJrDDmbEpmtUIqmYVkdiw10D2Q2Lw6m8gOsN/mzZuFN1ZnHU3JdHfWka6tyWbB4fNEpAZHTIo4xFg1SYAj0pCmRXju/fFXn36BfDIrHO5a3el7B/aFZswI4VXjnwYkKcA9VSjlzv6a0xEY//lQrvcowihB9eHk5yMXKkJPKEvRPLPpiOmYiXxkumbCu01g8reb3Qk37nB3uY+4r7k5dtXsPuY+4/7IrRPcStMM1R3iQu4QbroagoMhwJnQUGgkNBriDtICDlFRnaiqUbVzQUA7K4JVUPmldq4wU2R3+zM+T14eLWOQSNB5d2+m8xfeTazODmwev5jNDozV1oDbhsWSaizVyTidKsbkugzgTkdxudcbK3Y4imNeb3mxw/RMzj90HyS492+spb2uLfZXVflJ2F/FMJNEiPyWvIZEdOoVZJi4pMSNgsoZwGAXjBbVLrSbzR+ZsdccHY4CF3VHz0UvR7mm4ejVKI6yWRQkatREFNxRGI3SaUehPzoYPRglrPFEqETVOlW5vCoqbB+kAsEoJITCtHAhdCmkM4TCGdFeKJhDGVuRx4+QewkvUDmkHemW9FgqReUBSSqBsZQmEgoEhooB4d3VFCOJ2hqKEJAJE4VnEg91ZWKJDes/RweF94LOztL6VTOjm3Mb7lq8LChPl5y7cusHBsBCeoTSYlfxrPUd448yqeAVS7t1BjM37vpcRhjNm/iYfMjvp3ZVgb6uSOvKt5fjwwYwGh4w4Cc42M+BhQODE4ntvgRKQDv9VxKDidEECSd6tAKXYGIIJqrVgLqIB96XKfS4Ml4Uy5gEEaHwYuJlsxZ+yvTP5pwdo/PVAEClwOap/aI2EMMOTfleXzWZAQz9dKbgLqZV9Q2OahBLdPgXlfeuzO1Krz/al94iYQzwFLRuzf01F4q29jRPXx+Nb0rft6tNbIDfbjtz7xyL2Uwlab9aUPW3V/xVcP72gytjPgF/aDC+RfHhnvgYV3F3Iz+6SWnCjQaHyungxQCMBqAlsCiATbZ2knH3uLHbrUdEIGFCDISzZIyK0aYa9Wa7x7EYaZNrSb+RGEsxdabzpp7NbqaWnOBLyiSHKLVA2pP2iA63l83EYyOwsKf7zrvWtvzqV8010bkhe23zLPfmW/HDVbFf/rJzfNfMWSbdTJPbbkKa73NTHH9AdVSORl5BVirshEFQK9xNblzgBiP787TbBfAK8aE4oLgQH41finNNQ/ErcRxnynFTICfjIMQhE4f++GD8YJzEJ0GsdUgwEIfaB0sBlQql4dLR0gull0p1htJophyFPEJpxlXiKeZ5/xLTfw7hLwCYabW2JsGsWv//Q3EbAMHBzE033YjkFrmeIrl3x0OQIp/ayhPl1i/BefXSlZ/DmccFFM4UzxmK5zZq8yEUR1uVqgfccNgFZtc+F/YGygLYWOAvqCh4rIAzlKkhszlUiSpBHqwcqrxSSSqZRGbPU9lZ8cWr1Sio91N/jzLRqC6c8Qu6xQ6m7Rbm0jUc02kPUBy/kUoKY1NABo8GWBkzPecdWj2bfhEAnbYnUleNgfO0bM4Wz5olF/pmLlxRte2Z3so3znbcu6Yp9+3GxZIfvuVIqPBr59w9t87gDSZdoz3gtSr/9MOdn/6lfPVT25fAE8nld86ff+fyZB4fFXTih+mcC9CGE5wJ8OmJt5Wk0a66QtAHu4AAGNuRTbCFbaO2C7ZLNp3BFirsLsRKISx3rXNhFynAmtemXhHjAsGecdqNtoxlymunkwnhp+ksDGxOMtUms9RqE3SiYuyLivRRRePDiWlBRWn2PpObtWMHOI2+TDZbSl7LbTJYnabxWVO+Z5urtrKYjp3GJ52fjn06OaPcx0lwWboqYV7ySFGJcHVwue5qHebrPHXROmKOwUexazF8NvZmDMfCBqtqLoePyq+V47Plb5bjclbDlcHlsqtlmC/zlEXLCBeFy8yd81FPNBolZh985Lvmw2d9b/qwT3uCFz7yXvPis943vdjLavSnJ36imE3FKugcuoiOCEyaF6jBEQcYiKG0vaKisaBd53rUhU0uuU3eLuMKGdwy6GT462UZ/ocMJ+VzMj4qwyEZ7pFhqwxrZOhkHbxyGb2D+4sM5+SL8mWZHJdhWIZ6ebm8jj7oUZkvlcErAyfDVRnekv8g43MyPCqfkvFuGbbLsFKGOrlVxmUyOLVuP/k0/7qLMnlWe+EeGTbL0CtDRoZZMpTK1KPmu9Kev5Phogz/JoN8emJQ8b14XF0ir5FxKxsC7aqNEGttE8PfVY/Kx2V84yOXTz4vP8LDbHyfymRYZgMgj8qwm3XZrj2vTK6XMZadMqYT+UN+vvgU63JIxmy+22Uy9cJP2aguy/jfNGE8qomLDZ8+poa9yS2XyuS2K5O9ttLXYYXVs7EQ+vh3ZBiRR2XcK++Wh2WSyY+yVSbClCQvsAHAMRkOaoNsljfIOJx/NG7UntojD8mY6khhqqRTVLoO0Uldlq/K3CBT3lbtnXUyBLRnUj2PyoAFOSP3y4PyiMzbZTCgdHt/I6BGaGzKTLe7Ckor0nxjJuat9xgikeASq4BSqao8CUixcMgO6fSYT3OjzItSD9KdzdNCjRgymjT1G/i76u5/0PCFWxJafeLGxi92+PubJ1uFi9TQKSUdo5beTYkIolwkQXuz//zfF680ouL1/UNH7/0vHH9wwZLO0jnbisKrbu4uq1/RIu7MLXuoY1nhnDktHsf+3Kx9y5YFZzRLzv255dSZuPKUpq7JGQu7v0BsVhpMVq5+5ufXWmTwXyc6GC2kceE49TNmGhkeUqbvNh0yYd4E+wxHDNhkgH3cEQ4bOdiND2Gsw2CwqCiCIuEIFiI1kUzkUoRjV0qENEeYq/TOnKc+HYH+CCiRnshgZCjC9URAa7JFq1WvqnNkjEIgQ/IBA5Jj+QDJGK/w3vVgweKFm9LeMi1IePU0ODAZTYUQcvyt3118++133/qfJwtn9M6d19Po9Tb2zJvbO6MQ3vnzBMr9+yef/d//ffNjtzc03P7YzWse39DUtOHxfExooTHhef4oisCLitWo8+sqdMRgFmFcZGNc/ddr6j4R6sRWsVcku8WL4mXxqsj1i+CmVZ20kmOHreJJrUFnFgMi/tkVEc5pXYl2L2snw1P35vuzIq+9wjRyQtVue0K7tBw+oh4RYau4W8RaRe0D+9VjIrDbdoskIAInwlURzojAnqNVJURMKzewDodEot11cO1tasdU32PiGREfEiEhdrGebhGzmtdFwspsGltFfto1EU7SMeIhEUpFNuGt2uN0gggYiRAWa8SMOCgeFEfES+IV0SCIYXo5KnIFVmuwnaCIQPU+GOEMkWAkE/Kgwgzx250ZY7cNbDYjFbRG+BgdaskzwBSNkCmq5u4pc5o0sMSk4Wk2qUFBg8RUF62G4cIlSg3SJA+mIZbRXhtlD4w/apbz26NHE4u3za1qC9ZWCWVBsbLQ9Le/vZ7j9pEVtbFZ65/Z2Gg2nL/TZA7N7G17ovOzTyNVVRGkcSOV2sAAeZUyo3r0bSWyoQwCvoQP27yyFzvDZrta5KxyYosTrA4ADshpmjIVGR0qZRCGoKm+Xdc42AjdjaA0Ai3UtrtjTCUhk02NxRa5wV1WVpLIBIOoPr3YZPfqMkZPSQYJmgEw+TB/QpkTsHQ4IYyxyV9PARKav2LmMOVAYlPsSeZaQNIMQ2cHUZLBpbcRj5sxafi5silTtS2Xc9nTave01mxjQXH93GXdNfttkcZ4zZpoSePMfW/d27y8MXig9ZYUebVg2i0d4/f5q1bby8WCeMet0+UuOeY1APdwfE4qWOjZdt7myRVz2FWdkUdCBZPcSqDc24j2KuV8ewKBGcG0LrQB3YmOIC6AutAZ9Dri2NUxRJD5nBnMjEi2tKlmLTFqbFYPminWzII5Yx4yj5hHzbqDtHDFTMyTubPW0UJzZiozhPgMmWRekE+WEwkqKC1lYoly9HP/2cfy4CFoa7uBAtMxrJjoJa/yr6MGpKC5gJV9FhdQrXJpd7o0TR6ZDdaCJwvwoUp4sBnumfOtOXh269LWh1sJqa9eV729+tFqrj6xLrE9QfQMFEJFuAJjVAFFFTKp7xfawm3Ybg1Zk1ZisBa2kYYGT+OmmohiEdRIZE8N1HT0dADqCHfUdBCFloc6LnVwMzd5dLoHPOBhMy0zWVVPe/mWosaaGbaKNs9MQxFCJVBSEiws0svWLQ1IL+lpVtaSosT6PBVE+jw1MofT1yQwE0tQ/GjwEd7IphiSKLB8aWpFNJLSoMi4aRZpwRGyiP5ns3w1iTnSvmLic1TzzLYapLSnGHza6krMUcx7WJrioU6tGscclH1Q/+tz2AB+27jl9hVFs0ocsxavLK9e1alKxfVr9nUuWTwszywSahrlULJ75YKmSP26Q6uXQH2pvDS5afv4tXBjR2XvBjdY3QVWUM76KiJujOuFSKJh/i0z5+64qV5/9y7qRXJ/Grb7XVacEx1i1bTMbXOWf+M2Rf8Q/GFG5/SEc/wTx27S2TC/ocwJZ6zrKRb3UuW+xs9ABrRICaAwZfi8Tgd6YkImxYQVU49pyHTJxIGW8lEqCzzNc7bjA/RW9od1mrOi3qqphUlxgCYubNmJCswlOiIeECHy01lEHn/+btwxfoJDMGPBNYEb1uLJKvruA/x8VIJ2KcuixcD7H/Fjg8UZdE53zndyD9ghzoHbjY19hSUlhaWoVCnFSmlP6RDNI7m6SGsER2qwgjE2+iIHnICcghM7nZYte33g0+HIdijQIJ9la2ZU1U3MS2S1ISY1BdfWIKZPquUKkGSqRI1MUIdA1UU9JVUgp4+QA5+9vvZ7e9fOjmzfU9xcn3SKs+Y/vPzd3yQyWw+91IuPP7z6kbu3Dx7K3nO/0e4yDQN2+l/+7pKH7r5rz7e7pjgCvwRZaei/+QchgYI/cHriijLDYleXe9Z5sEOgpR0W2GmCO3Swg4CtD4lIVESsiD3iEA0gXEGfYjhoGKKZgmuLWV+0hfejqVUPOhsW+fOeLkFTY2yjvp0+1JlOOcnfhX7pq88OsOB/8d3T/uZb5s7rrvd46rvnzb2l2Y+Hn8t99lIX9EInLICbc/+ce/Hg744sXnzkdwcPfvD0smVPf6DpbA2dzwjV2XQ0cmJPA9Qxf77FYFYTYaNVfcgJJnbmqXNvntYxDU8L7JFA6gt3B/oCeFf4QBhXBsLhQCUxevq2oz1UPjKSFcaDGVm+JHNhY41RMRLjtMCWYDAloISQwIlEdEtKL2zh+02DJmw3gcnEJJCHnbYg6mDJM1MvEwclmb6mZFJrzTqasvlQQL1efjWwLEaY1TJ5sAiQBKlBnowFk7oned1jfTGQEWXnSwO3/LDDPKvKOW12e3F2x5zCygW3Nh84MPDVwLTs7OIZjTUUEWLb/M7aX7xTovbNP/UCbOw6cEtdgQsK/7vJbTdWL93SuvDWliJiWGLUDd4z82YlPIkUo2DWH32uZWNnk9nzXWaLE7+HneiXyIViih89ikyATILpiolMngwm+xHehSYXSDYzv/2lBU7Y6QpX+Qsrwy5XuLLQXxV2fcVfGXG5IpV+dkEbmQ53aDqcgSrRTqX2Pgx2pjOdAXjiIVFCDGVl5YV92/k9POarUbVSjZXqnuqh6kvVXHm/aGOeoIjeYCsJbUHIE9teqvNsMfXbB+3Ybge73XSDbphemHd9ayyvGSczutUMq1pM/kcKoSFZzzxHhCoCPuh/YWtz0/YTO1d/bz5TQXq6oqkgoN61pnlVUQ9+bvy4s6phDhGqVn9zbffjm6Z7vJNiTy6/Y+7CrQtjggE/9liukzPoeRoGUdvEB7peao8E2amZJdFs9NQrqHri0gnKzitP58+2ybOFgTtOC+VheihjBwM76Nhh2sn4D0rrAOoIUC5DTKUna5hkorSpRjjJ/aDwZL8JuilYQ6f0L3tOWTnMSaeqXm45FYtRBbekkmNXx1pa6IHBlp6SCeqSmjTYXqWaRYnJHy9CGty6/5TP/5dtpzeRk33jvc9875mhZ559+jtPOMtn19YqZXZ7mVJbO7vcySWHvvfMM0effXr4yJeb3Py63DdPvPqjU8f/5fTLbRs7YrGOjW3tffMrKub3jf/o5Ks/evkfNOTzhM6Jj/EvaF4koWeU0nmpB1P4656HPHiad573a94HvRyf9qSjaTK9cH7h1wsfKuS0xSUfhVRxgdGiRhXBo0ajrjbUEG6ABibUmuKIuqihu+HFBkIpqtkcdFXx8Uykrqy1DJeVRQQhw9eZW83DZhKmTMnMe68jcHK3hPoGLb4nmLukTJGGpwSN41qqlLegmERBSL1+PcWg7ktUWUflqcO/iHXetzrZtXCatao2tGZWdm289aaum1rj1L7ntN4zPRkvXJVevCw+Z8VXVsyJg6Hl9o4Ks13gP7w3WL54WWpmZVFx2fRVs5XeVtFlOb/RV5BprW6uKA5XKF9hPDqSm09GqMwiqAYdVNbentyZxLoi2O045MA6B+w2HzJjYgaDDsBYotpSSgpQajCFm2ghk+pPHUxdSF1J8fkCWZSChJcLtuczjQss04gEM8WB6ozLG48t5owCyhA7apnMMSazDLb6mtU44VQ+OZlRuiYX4m6w2WJSBBpphEmbdWjSO7wBDNjTNGte2YqH1qTrbnvy9vRAmq0WDueUHbi3ZObq5pqNZfF16d13kHX+qgZnkcci3/mD7VteubfNbLaEIkFjriCZLCAL1x3sijuEcYfB+A7D1EnKFe7jVWSi8SIuWDIWnLH0W0YsVywc2qQIPCBe4TP8ED/C8wZeP2jSIX4LyROAwvOawyykToi6TJ6OOurgpWgabwHneBJcuX+HvXUZbber7WbpPQ3DC3OvwS70C+RDM04aD6Nv8wyHEYND5ZEAQo//gh/rnuSf6zPuMh6g8arH1e8adBEXYhSD2nQ2mT2XGJ/00HpJizDc5Kot7IrM3bq0a5m7WCx2t0rBulhBbXPf6vkFC4o6G5x+l9MfDdY3eSpmMFysoL76X2m8LaP51QtKxz2llBCVujvdve6tbr4u2BvcGiSS9IiEOaLtN5VGd0c5Q2Ufet8FLoXSf5drD51OI2pUGrHS2NM41HipkQul+kyMhVRS7lHDiJ4pRHnx1j2MMMcKt9iRW3CH2S6kXR/bcj8PO3lgIZc6qpbr+49sqYn6rsRYilEqxpoHPl+xRlOGBdSpOzU6pVkT0ZZr2DWVg+bxyxh4qL8i/yrd9ljvpu/vaFm679SajsflWaIzmU772geWJDn1WGfn3tWp3BplRb3v1v7WR+aFWm+DoduO9k9bfgxNPH8KdM9n3PYPHzAJFn3rgxf2l9Uke76Va4ov29U5/K3CgoPvPbYon6+WUxxd4lspjmzobkWwNHqLVEk3R7dMR5brQMeE4nQVqtSlCDgj9AsjwhWBs56e+KNS6w2oVk5x+1XOZDLAJpuOZnE4TAloBvfjITyCDQZs4G3bECFg1usY+2xJU0mxXY38Ng4tJJOJdILhkB5QAhw01EmQdqQ1pkziL4w/jw9sOZV7is+F4QOI5X4NsfvI4c82HyCp8Swdf/PEZ/w2GrsFiog7lM5tftjmArMtYNtgI1mykeAmMpdgMwkQbAxgMNI/BDaaUXrB5y1H5dCilEO4HPrLh8ovlRP9qgxlmFgs7db1lBGx29ITYPvM1CNM0ku2p/YedQ1sHSE75Q+YzdOx54M2pLhioG4BOOZHE6Dlkdzwksfevu9kcdu8jtJdP9jaMP7X74L1R7d2Pp8bf7Fp7z3bYi+88AJ+7tCvHmq9difGBDoeeY9UtD312cvDuf+2CjDkN56ZHVL8L6R+MYY2KjGD/n49Nljvt2KDEcBPfWGRyxWroHmkrFQMVgxVXKi4UsFXaCsI8Sq1u+LFCry8aF0RLlJ3mh6gKC+gIBFiJYtZhGA5YH6S2akdFxp2V2dBc3vR60sFWiRwTC2aXN+JIQsL1SUr41/7/qa62Xd8Z83iw3JDInp708xb5ojF8+++paR9drOvyVXkMs0efGXb4Cs7Gl2W3N+e9RQmex/fsOqb6xp5o0VP5xeg8/sNeQEVocPKSp9iEFSLcboRWwzTKZjsuna7+c9m7DaHhkLAdoJHQ5dCXBMKhUM1IYWWeSXUE+oPjYS4sFYY1PbRdah9xA8H/E/78SjzVP589mZW/frCjLHIriNL7G6vOWPzTIWAdD4JHhjIq3xywy3P1SC/xeiY3DydWkTRVguaOpY13tH4DUjvyH1iKMrctKKUrbjeAcVgWbrSLuAP/VWfPe6vmi+UBJ3Fs27vwOvYFjGdN574mP8RnbcbfqMIGzDgcEWVul74mvC4wJYw/qj4bA61g+/i8Rp+M38PT47yx/kf84T64QvKNtp3P/8kj9fzX+PxCh5ImRv8uALPxSsx57WV2dpsy22czuQ1lZmIV1+mxxQrAiwBBB12wW2nI4MlNrutnWA3IdgKSzjCdVisbovVAkvMvLldZ3HrdBaes9ishDLkespsGRs00VHp7T47TVNPT5w+HpzLTorZMXerBZZZ1lowvX5OWWmdm7aAzuK1YKOF2O3EQnQC8pZ6W72dXiJ4gfPCSe9VLx7yQqt3q3e395CXq/FCqRc6vb30YtjLUYNt6vRepr2I4gU86IULXvCyxZ2KSpWdlWQgpJ71Qr930DvkJd1eCHvBjHSCDuusxIbMApVAxmmwA+Ysdp5B3se2WH0p6lYp7lNa0jj15cQNH46kaP40gyZQGk+nPVj65Ein8397C4TE3sTFvQX0eC5/MXWqrYG8e+jWstGBAZp1DRhBNFPXRrHi0QcgHdBK/PLcawv/+MG83Jk+OPvE+7/v/N0vH4d1ZP1n9+Cvjh8iX/NXVQXG78Nrx7+N76Zl5reRlkfvp34vjg4oglkEg8FeYMc2UuwqxsWMQU6jAEeqPuwLYyFcqVQCqhysxE1C5cFKrFT20IuDlSOVo5WXKvVh7XK0kis0t78fB22/2kWZe9yWiXoLaX65uEhwZNxIy7O1fRVmHSzS5ckRNQ5G0ZmvYB5jknZPciDtKwP3ZJjzeqYIJs5F59zcXNBQn3LGv5p+8Ovj+x6AJMsdqu5eOHq+7qvfGai5pWdVGVxZt295lDNaDOM+g+FtrrqgKjfiqpWkAjHxp493nN2jmp1+u2ZDMYQ4RGXih5sU4V79w3q8yN5tx4tQN8JOakMnKKV2MNQ+RgvWcgrdZkuHpctCms0d5i4aI4zQq9+qP6Qnij6jx5y+To97Mej1BpvNatfZbdQurO0Gvdtg0Nv0egFe1J3VvakjOp21zwACzYVqDMRuoJoIKIGeAB4KUH8WpuVMYDRwKaCbIQRGAlgI1NCKnsCFwJWADtFif+AgrR+lFfoAw/PKrKqdFyzLn6Um7ay4ErWqHQntPR5AHsET9hCDttQXdHpUjzfjRwarQDwZO7LpOWJ2eXSQ57TUmzl9TZNbYAntU4JUQvtGaLO2VXKeoZ1G4iwNzo70XiGREM4Jew2jhtHrCKaoT7D0wJgHrnGS6t64z7QC7l4D87flrsKKdbldy3O5O3tzu3bsg1p4DZ4OVFX5cp+Mf+KrqvLDI3tzf7lhMZWgFbk28msugOpQO1oJ+xXfzjmwvHZdLa5liaVau6L2ttr7a7laNlkjrcEFFNkpBnEbjQ+l5bQqxqqsTLfLDXbVy+4LNRqsaric9tC3l6SqdSKHlqnREsVfRFMqeiiJlkQL9trA1iYphZT0SB1qAsEZBBxyI2xEXZ1doHRBXReEu6CLvdu5skcd7IKtXdDTBSe7znVhrTqwoFMd6gKuC1q4rt1dw11kmLZd7LrcxbH2EzNVVTtLM/LnRFI7Ky6axV1/AQ531Uw+r9peqDbJc4tqCqBAJ6aSXJxk1KJGs10NqUmVDJlBNavm2ZlMXJidcQUnv5bIp8rnUwJb7mEre2OpRLab7YPQH9N0/mO4BNsNYQZLYUATv7GsdidV+Zi29MsSQe2H2AJRguWDLJ2O6aklRz43Xm19t5pIDWVTKy2+Bh9bH6L0NcJ2DibzbS19vJ6Ck3U/PlWxNNhC1HrwHn5Y2jH60IZHV8f9VXKpMxkPPvVU3c3fWBWcli4z/kbcVxKpaGvPHfKIfpuvac28Vfcur8id2NjlSc6vb1hQ6/XWzMf3Hn3WqLvXUbx768y7bm4W5SU1keaGukJdIN5QcnzerxftXFyh0xtJX+Jg2ZbPftikOJN1kr+0OV4gtizHTXftaslOLy6enm1p6W4Jaau3Ex9ziMZgGwSU4lWm9aYHTWQVWo/wMsNaA15G1hJMdJyXw0b95IqIbvIMpyd+coLm6kaGwFJaMOVjq9HkNhpNNLYajIbJ2EoJqBGKtY5Oq0M1GonJjAIogUgJEgSq/5fVHpXmVO2srDjK29RLApykFnlRIEM01WK1UlEJZeRhoUYgnADDtBEPCoB7KD/HBoIMJkIyFt6uGIE3rjXi/2MEI2C2CJCmENBCHiRT+W1wtnPNIhr7PjLloHEuwYj53wUyBonV+d1w41T4yjsD8mxu77zcXT1w6hFwgu4R+AqLW5MxawfeNxmv1k/8njTRvC2E0vhVZWK943EH5sMWhxp+dFf8QPzpOImHUBwDuAyP1fvb/Jj3e/xRPzEQv3RNgj9J8I4EkvIfn6kbpDulfRJpkuZKOCAlJGxkzf8hYdrhpxKcYd0+/F+0G6yUoFnqkHCVBAEJrBJ8RB+Fz0u/kbA0+PY76kbpLlb6+S9V2nZBGvzZm+q/SOclfEyCxyRgb8FZaaOE59JHDp79sTqujeOM9Lr0jkSelL4v4Z3SAxLukjZIeAF7F1Swni+MqHQcR6Rj0hmJ7JcAdkmg9ZEGh/5ZNUvw9PvKz6Q/SxMSeV2CsxIcY3cdOqxqg01qg7VLMMHGC29K77MBnZHw0xLsk6BP2sXeCC3SIvpA5Z/uVt+nj8L5B+2T2FsJfR+dfffk7ENSUsL0rX3a7LXnScra29U+CRJSs9QlEbsUkvDktF5k4lu6XF0kgVkKSHhiaiYfSdxuCfol6JR6JVwjQakESBIkLEvaflPjDPWCBOckGJEAs4awpEgcoqeM1C+NSKPSJUmvda1Ipuig4aAE2tCQBIYaF9hpfh56ElOYJo9EXQ6H9UnK+dhqdsv4G478t2D5dCuR3/ZNXN/d10DMar7w2UVi4MbvLhL5TeDEJBm73pbIf5ChcbrE1KcaiRvvEt7rZttebBMnfZ4GyTHtuyyRNMjkCzumk9TGDq4vr0GfzhQeKJ1eWeBv/Mrs6beI4qy2/Z0XL0Y67ripaYErXPn58jQ9w2pYWKQXZ9++YO46pSjoGc65Cl54rm3XrR1O6/jfvrx2/f8AaoGPfQAAeJxjYGRgYGAUfL1xw/pd8fw2XxnkORhA4OLt/cEMcPDPjS2F9TSQwcHABOIDAGLmCtUAAHicY2BkYGBX/OfKwMC2igECGBlQgRoAPCgCRAB4nGN6w+DCUsxgzWTJoM3CwKAPxF5MDAwMQL4IkC3C3MsQwLSKQZMNIu8HZNsDxTyA8ppAfgQQtwNxFEgOiJOYIPxytlUMbsyyDCFAtiIQb2GCyIPUa7AeZ7AGmgHiSwPZTECaAYjVofIMQLksAJyXEkgAAAAAACwAyAFGAdgCVgJWAqoDQAO6BBgGTAbEB84IaAjCCa4J7ApeCsYLdAuoDCYM2A1yDgIOOg5+DyYPhg/+EG4Q6hICEowTaBSsFVoXBgAAAAEAAAAmAFoABQAAAAAAAgAQAC8AWgAABAsGOQADAAJ4nJWPQWvCMBiG32grbMKOXpfTTlpU2GWHgSgiUqWouOuqTTVgE4l14HHsRwz/xP7N/s++tsFdemlCyvM9vHlLADzgBwzFeqRTMEOLpoJrcPFsuY4nvFh2KPNu2UUTH5Yb5D8pyZw7ml7xbZmhjV/LNdwzZrkOnzUtO2izN8suWuzLcoP8da75Vh8vRu72KZcq1iYJU6kVj/VZRd5wkK2OLzfC5H4pjIwXOgnVNBBReODBaNyfrGY+L4+W27Uwp+wnPa9bHsAcGhxb+h5xgYHEDnuk5CQUYvIGCUIykliRz9yZKIKHIQa33YFPmQ0E3fjPL/NZ0q0FzVmTwhQB2Yj4QH0BRhijjwlWmFEHr9RaJbvO6XR7SY9e0K3S8AeOTHIJAAAAeJxjYGYAg/+KDCkMWAAAI5ABiAB4nDVPTWsaQRiedyZR+8WYlkpKq5McQmsXqnQp5FBwCWU31YOb2IVowLWl50SYJlf3ouSSRgK1pBHaozdXvHiwuv8g/QHZRuixFW2uQeysocPMw8Pz8fJO60ahB34EKDHDPswpWRhM4GwCSxMoXYF+BdZl9RL/HUdZc9wf4/TIHDVHJD4COoIAGgaH+rAwLA6/DX036R+4jX7Dwq/BKruQXeOnfG4gF17qruXaLulMHSXnBm6pLhDjnIRY0Fly4k7RsZwfzsAZOwGrV+3h790Yo13WxaydbpfapNAA2mANrJ8WTnG1DrTO6rE6+XLyjJ1oEfa59pgNauMa9sa/qN1ZUM1PUDo+OsbFilWpVohVrpZxc7+/j7keZbs7EtvRnrIH8qLhl4nhI1PmNV+9W3miFkyFmSK0nYuznBZl9+S7xrxYdk4EKWEkQdJklxyRPvEHNvUI2xBvoI91TNMsHUuLHw6Ut6llMShZTFpJ8lqNsnVtlVGNaTHtTLvQRprP1OCruGpT7atEUaMxVVEjy+qj9YdGSL5vBGVqYEAGyMiI0SnFlJq0RAlFCYStEMxDB6qtNxlJSnX8082UHdC3bTiwVzIeKhs523dgIyO3vdUC+JgtHx6itXDKfp7ZsgvhbMp+L4jiEUuQYLgVQmtZzj9I3gFJEnRPIJL2hJTn1yKS/ttI4sA54hwkz5tRoSAuebKneB0QzTxHHniuNEt5jPPF/D+G69JVAAA=) format("woff"); } 1. Find the term of a loan of $7200 at 3.5% if the simple interest is $1,764. Discuss situations where a bank would give out a simple interest loan? var isIE = false; var f1 = [['t2_1',1329],['t3_1',1300]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
1. Find the term of a loan of $7200 at 3.5% if the simple interest is $1,764. Discuss situations where a bank would give out a simple interest loan?