E7 2 E7 2 Supply the missing dollar amounts
E E Supply the missing dollar amounts
E E Supply the missing
E Supply the missing dollar amounts
E E Supply the
missing dollar amounts
E E Supply
E
E7-2 E7-2 Supply the missing dollar amounts.

Category: General
Words: 825
Amount: $25
Writer: 1

Paper instructions

I need assistance with the attached income statement relationship please. ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:55px;top:58px;} #t2_1{left:108px;top:58px;} #t3_1{left:212px;top:58px;} #t4_1{left:55px;top:75px;} #t5_1{left:160px;top:188px;} #t6_1{left:328px;top:188px;} #t7_1{left:160px;top:204px;} #t8_1{left:216px;top:204px;} #t9_1{left:241px;top:204px;} #ta_1{left:305px;top:204px;} #tb_1{left:374px;top:204px;} #tc_1{left:454px;top:204px;} #td_1{left:479px;top:204px;} #te_1{left:160px;top:220px;} #tf_1{left:216px;top:220px;} #tg_1{left:241px;top:220px;} #th_1{left:305px;top:220px;} #ti_1{left:374px;top:220px;} #tj_1{left:506px;top:220px;} #tk_1{left:555px;top:220px;} #tl_1{left:160px;top:236px;} #tm_1{left:267px;top:236px;} #tn_1{left:305px;top:236px;} #to_1{left:454px;top:236px;} #tp_1{left:479px;top:236px;} #tq_1{left:555px;top:236px;} #tr_1{left:160px;top:252px;} #ts_1{left:216px;top:252px;} #tt_1{left:241px;top:252px;} #tu_1{left:334px;top:252px;} #tv_1{left:374px;top:252px;} #tw_1{left:454px;top:252px;} #tx_1{left:479px;top:252px;} #ty_1{left:555px;top:252px;} #tz_1{left:160px;top:268px;} #t10_1{left:216px;top:268px;} #t11_1{left:232px;top:268px;} #t12_1{left:311px;top:268px;} #t13_1{left:374px;top:268px;} #t14_1{left:452px;top:268px;} #t15_1{left:488px;top:268px;} #t16_1{left:507px;top:268px;} #t17_1{left:564px;top:268px;} #t18_1{left:212px;top:176px;} #t19_1{left:212px;top:188px;} #t1a_1{left:264px;top:176px;} #t1b_1{left:264px;top:188px;} #t1c_1{left:398px;top:152px;} #t1d_1{left:398px;top:164px;} #t1e_1{left:398px;top:176px;} #t1f_1{left:398px;top:188px;} #t1g_1{left:450px;top:164px;} #t1h_1{left:450px;top:176px;} #t1i_1{left:450px;top:188px;} #t1j_1{left:502px;top:176px;} #t1k_1{left:502px;top:188px;} .s1_1{ FONT-SIZE: 47px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACNsAA0AAAAANsQAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABGwAAAt6djERXY3Z0IAAAAnQAAAAuAAAAOCX+AcJmcGdtAAACpAAABRIAAAp127YujGdseWYAAAe4AAAYQQAAI161BfCVaGVhZAAAH/wAAAAxAAAANq9kQCFoaGVhAAAgMAAAABoAAAAkBgIEn2htdHgAACBMAAAA1gAAAOrY/xQmbG9jYQAAISQAAAB4AAAAeP85CCptYXhwAAAhnAAAACAAAAAgAfYLc25hbWUAACG8AAABFgAAAhOXL44TcG9zdAAAItQAAAATAAAAIP+cAMJwcmVwAAAi6AAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nN2R3UrDQBCFv8Q2tE2bpIU2/Q1JmzaphJL+WOiloIjghYgv4KXghXgh+By+moJXvoE+gCDrxATxEcSz7M4e5uycGRbYI99DNDnRXoRltw9KvEr0ZZW+Y8iCNTuOOeGUcy655pZ7HtSnUoUiIeWAw0JxwRU33OUK9YZOAfWuntTzD3ssPLMufGbikyNlwxFnBVtRlnxEjMG+aJZSby6OPoE4p1JhQgWPPlvGdHHktYtNC5MmHXrUGNDGoipz/O/p0IzsM/WyUanWzHrDsp1mq91xu73+YDjy/GA8CaeNKJ7PkkW6XK03q/JwF8WGOC/1eVL05AdhqsnEo5xOmVQ8fqG/HXedjWu3wGx2etJA26qKeZ0/gS8N60uGAHicY2BAA1sZOkGYVYmBgbWd+RIDw79t7PP+3mI1/P8JyH/4/9O/hSA+ABumEdgAAHicrVVpd9NGFJW8JI6TtLRZKKjLmIkDtUYmbMGASVMptgvp4kBoJegiZ+vKd36Dfs1TaM/pR35a7x07ZjNtT09zcvzuPF3Ne+/OmydxjKj0KBDXqAMlz/pSWn0opc6juKZrXhYr6ffjmmwmnpIWUStJlMx2BgdygcvZjpI1gjUynvVjdaSybKCk2o9TeBSfVYnWidZTL02SxBPHTxItTj8+TJJACkZhn1J9gBTKUT+Wsg5lSoderZaImwZSNBr5qIO8vBcqPjmedQuNGmCkMpVhu3ytXM924rTvDe4lsU7wbPN+jAcesx+FCqRkZDryj52CE6VhIGUsdaiVODocSGHvSNx9BJRSI5Apo5hVobP/Z8nZU9xBNtOElHTLZjU9ZDi+ziuleqo6mR5QRVu041EYUR7Cn8SXYl0PtoYvV0xeLnfEHWwFMmPgUkpmorskAugwkSpX97CqYhVI1Sg5ZTNUSGgfsWQ2SlWW4jxQQyCzZns3zqfdrWRF5g/1k0DmzPZOvH1/6PRq8C9Y/7zJnbnoQZzPzUXIIJSqn4gTSaEe5jP8qeJH3GUIU6z349yFWjieMIPWCDvTqGm8doK94XO+UqhbT4JKesi/B+/Lyr1Bz9xxFjR0icTZOHZd1x7OW8iy3NmNHZnToUoR8Y/5edeZdcIwS/P5si+Pfe8clHkbxLf8QE6Z3KV9x+QF2ndNXqRdMHmJdhGS0y6ZfIp22eTTtKdNXqF9z+QztGeMVPx/GfssYp/BOx5i076P2LQfIDbth4hN+xFi0yrEpq0hNu05xKbViE27YlTb9kfdIOx8qiJInUZWWTTmSqMWyKqRui919Oh5dGBPvUFUPWhplT2I/5aBrgjkwlhpd1nON8RdWrPFffyiEC8/ahh1zebpG0eKEzbHtZgYlH5n+XeHf1sbupU33CVUYlA3Ep2cJ3pz0AokMM3T7UCa/0RFH+2DfhFH4SzXVVP1eL8h4Z0s6+keLmm853GyYI40XXdpEfHXDLJCj+PfUmSq4x9mTa1UO8Nel54/Vs3hHlLikOr4SlJe2c2d+GlBFZX3tLBaPJuEnCoVTCdt2bqLCxS9ehtSDo/hvCxE6YGWYjQ4wONCNPCAUw6MV98ZICUMad3F2WlE6KIuGBsF+00Iou2IwpOU2pfRSOXXdsWOrKhuk8AvJpina8nzWDjyy9RAwVNeHWmg25DminVLBfdEqa7uMRhP66qVjAWMFHV246Zq47PCjEdOxVzGktexujNs9c6+Hp7SpLYdHYtm714bhY9OziXlB+3V+k7Ocd1o1aRkXQzWdtLMV91F3LrrY3f/RXfrZfZEzg0ja/7ETW8aueRnCMxOQbavc3AmTVkF9da4vU6kZWdp9HkTN2S4XdvwKxP+hz7s/V+tx/Q5VNoac+OFw64loxxvU4yT+jdYf02PBBjVMS75E5S8NLyZxw4v4UJTDC7i5hv8n2JGuYsLEgCHRi7CRFStA11VF5+iE522DHtRIsCOOXacNkAXwCXomWPXej4DsJ475NwGuEsOwTY5BJ+TQ/AFOTcAviSH4CtyCPrkEOyQcwvgHjkE98kh2CWH4AE5GwBfk0PwDTkEMTkECTk3AR6SQ/CIHIJvySH4zsjlsczfcyHrQD9YdB0otf2ERQuLgZErY/YeF5a9bxHZBxaRemjk6ph6xIWl/mgRqT9ZROrPRq6Nqb9wYam/WkTqbxaR+tj4UjmU4kr/Cb8fwV/jAfgzAAB4nK1aeXRb1Zm/9y2SbG1+2iVLsp+etVmLF1mSJdvysyzZTmyHOLITO453J3F2kwTIShICIQRIYrZACmUrLZRQEs5ApzBtGZh2FnqmLcOZOZxOO4X2zJlhpueU9g9mIFLmu0/ykqRMO+eMTyz5vfvufd/9lt/3+74bxKAAQvSH7FbkRgnUhjrQ6dcRphBO916uXjssNiGawhSN5xBmKMxsQQhRNKJGEYNYBcOOorIy2QCSyTSdSKGQDyC5XC3PVIqNN06ToTIkKxu5afrypBFR3SFynMHnEWrtNeWWgD5FRxqdlNGgYbRY8HpSTLTJI7g0lODy6ptSVGkQLsMU5jk+Dr+fWprTfcG22R6vI9BUxzPcHWrGFoiGqrIxb8xrU1pVExUOr9nktXOc3Wsyex0VhVfob11d10hnr77F9BvdjgpXaiQW7UvUumtMs7fyDX5PKO6tT3BGzpi3mnwOjnP4YKK0ADPz+RNRJg+7wmgB9PgQ60JKFBYDcA27p8h+2QEZZllVJ6JpZgAxjJrJwF0lUnLkR24IYCMITn7lPEcv5L+N/6ngp1bjPGJdjxQGzhUyj7Cua9fQNKz/I1jfhehpYiGmGSGnWIkwpgbgVRS8ASE1ymCMdVgn+Bh7QJJr+Uf+GovZ7GSmAe7WwmqwLuL+4BrwySFO8DIcSGeQybEGBzCOxXmXpw3Tj2jk+d+rgsIhymRx5rdzFta1utqv+eJNi8DE61yWir1IenMv/i/KTz2IaGQWDXADo35yfwCGcJaroLiAHvbdi39RcFEPPgpDsMtNINe32Qayy01kl3IjQg1iOIQxrcLgUmlQI8oxsC1DpyQ2oig1laGwWzAaOA1uoBpYW6D4/m5Y6zlYq56sEIQVlP/LChjVuAz6CjWqx/WsNoBLziXHKRzhG00OzEebYnGcoqNNYYp4oVyD6+CSkuXOzrUEVk1GC696+gX8bGX11Rc0HL7QlEtWC63r6uvWpoLlCq+wQbVq9zm2oXH89IZVR/fuiheeVaqqbJsTnLcCfy06PbMlkVifsDsi3bUuI6sZvX+8nuwhfu139GbYQytqE5OtGLMOzNCwB4RpjOg5RDOYhvCCgRxiWdgRw1A52JGRyiSbvW5XdaVV4GVgRhkJEyK30eCUFcPG443D5mCjkcYUBduSRaWoMplph9am9bfkkvFc3B7Jbd+9PRdp3vHk7MH3uqNyo0Zf1zWTTW5s50tDTTML49teFZmcvcpdVRVfVRvviXh8kf75gQ0X5sWxW9Yr1f4Gvyu1IdrSFxE8DWtvH86e3NzWBepHR699Sr9Iv48sqO8NrRxwhwCPC4BHzwJwYC1xSCpHfBNsVCmaF+/CNRmic2BNIw3goYIrC7K4eb0g0wcwZzBFGmNxLsLBPuvAf8n2oxwOzWzuPRG/vF1noSrav7Jl7cF1tfT7+YXdB7tT1E+vhjn9XNdQdOq+HLWH+BCFHiy8QX9C/wqZkQftElX2ShnNMiZMsRTI6QQ5HXLMMCgHzo1ALJYtar9Thmmao0FiHpEB8hDOwe7MNz8zIuqtFoSqnRaP1QMvMvvcvEIX0HNgiipctNCiwTjsksk5J9yLET98cJveQnGpZ+YGT082JXc9OT1yZwOm1x1tCu/JnFrg20cLb7B2Tr+3d1PHnW8e2vnWfWtaY4V1zDN9XQVfe+SdP5s4vcFXjJWH4aOTPQuxahGNoGKsWYYCGoGYFaBTgcOdl9mzn++FB2GOEnSzALYzoUrRomEl45GpktE4lAm6XLQuIGGHHhO/0juxOYXj+hRuwfgJRaXt5IuFM4+bLbJfK7SsTKv4uczOPVD4pcGE76YfN2nyTxprjaaAkZrWGsn7XNc+pc6wWsCGVWJXGcRzFWZl1RixdBoBxmIZO4cIhjEgAz0AjiEZBA3KwTZGAEbkqLSY9DquQquWMciFXQptgHV5osRF2kpiSUhMfEeKhCoQHj9766F5rfGinzJWbMTqwu/jQZvbpleUKdmm0CHtXQepQYO+y4BDWl3hyvH8n7e2anQaRdlgbZjIfE7Cs7Pw/pBYa6ApyAoQvEhD0kHJIcClJe9GREqjYBQ4cOAIeG7J9KB2kvfA7ucutz06DS7rvzy9ufd4jD2bfze9hnhrfoHas+tQT3u+gfhsL2DGFfojyOhh1CNmzVh6KcQQpqk5yMSYluFRBSQllCOqMZNoYnKAHEYm4/VAbvB7wt6wo9Kg06rL5MiN3WWLgCgTeCe9rBxaiipADTOIx4NDUubhx3andJb8Xio8MJ8VxzvDnLJC1siPbNkV3XLpaFf7HS/vPnxORxld4hj9UXL+uW3+yk33bQw5ahxlCtGbcOsy97x7bMuVk6uPnz/aMtPtK/om+xHsJ4DWf7tWI4M8uggSJpkUfIDqJMgUcpamaTWJOpsUdTIp6ohLmpcHR0QtDAZQADSt93j5MhNRthRqNHFS6XNR6ZqV6n94zmCmtPa2rrWhzccqjdnBycZnXr08NxVc0yJcnhoX58P0+5x+lo/7TbvHYn2N5rdfI4bZe5ujZX2C/HXb3s6WvE/Kc7vBOTazJ0iegz9dSI9ItjNQ/408ogD2kIBNI7mydimxG/XKMsxgRsdWBhZjFuJvKWa1Xxaz9PtXQTbijzuZ83iGPQ3v00l6kHxQgzK+GkjHuMSmoiV2hWcMQshqDfIGAx+0WkOCgVVaQ+QqZLWFXAaDK0TW7IK4/Gewz4ocRTFfmqPM/z85ivqGyqIVGjrD3lTQ4ksPDQ+lfeGRk0NTT8f9ChOnq4n0xMKdQZM/PTQylPYHB4+sHX2kia43mawmkyfi8DTWOJy+ZK4ls2+wPh1NqzWVfKUtkKz2Rd32Km/bcHti65pwawz29wCJYdgfyVFmmRTCpRwlUYki9C9GMeQoyfduju+lHCUY3XwxxFcA/LKbPUBAXdv+pJScLkO+uitG/KqUmIqh3t2er5esLBaeoZ+hP0Zx1ItG0AWxQoHlinqOouTttRR4PEhqA0mD5VgOjFQOzJtGLOSwUSS5i0KBcmVFDJDJJAywMrCFOti1AmHF3M3T/uCMEdHe34dRbqBvpH+kpyvVKvAWc4WGoVEcx5UEPExm3mjQYlPRql4NXjYx8bdYPIwXP1MUbgozxUcks2OS7IhuyA38923bAxj55qqi4yf6xZjDHhuev21+ONZ66/Nbt17c0jjU669vbc3eEh2/C+92i4PjU6GGlLN9ujO9paum8MupmZmpiRlrwyr6Y7utQ5Bpxb6e/etCWn3AKLgqmDJDw1Cm/fZN8dqe8UjPrEOfjteOV/lPjfTszwW/+HchaFXKGLltVYRv9ltsoXaqZeeGkW3bRgLdTQ6CvasBe78GeE/4wryoMmCWslcyNCPxhRrCF6S4XiQB5s4SfZBRUuQSvnD9uAx0rV7mD0YMyjZZLbjEF0xGXYVChszYDMmMX0F1SmECacRNeFAYl/RHt4B36VJfncvdO9mU2PkVQhkuF/pzh6N1uzvvOc+nNnL62whfeAv4wuk1LXHK8fneY/1Z/GGJMPjRYo75DcSEHnlRUPQvcWpwd+Bqi6IaDRhVOQxeo1dZhvRYL1sm1otC6otxvRj2FOXYcelAR8eBSzt2vHKwo+PgKzu6t3cLAnz07CDfO+iPuk++uW//mye74Xv/Pvi+erEBSPWG0+ONjcXvhiJ3GwRuuQG4mx8q2/tEZTUw5zqGksmpUvj6EFBpmoGcCHWGjJKDk9MliCrDMhlYRbFoleCXP6qQDEQmLBvIFqjFqKG+NhFI1LiKrKNcgfzYX75opKXMGV8qauH2Iha4G8mAhpYMVmazsybPqrWb4omZ3kD72V9/fWosNZQKmXU2RfXAW3vXHV8fKmSCq9Mtjtu+tjVsrU1WWEeFuEdf1TGVTu4YjDK9e/dVe6p1muY1/dHp07n8uZ06vsH5d6yjvsPniQscRPtJUNhzoCsLeqD3cgiUo4RyCwHaAXilK8kVvXg1UiS+ekLKl9APS4VtZXFuEQHpRUcwLw2LTkAT0CQzdyNGFh8YWcJIvuZGjDSZ5ZAfJF3JuZOb7WZKFbp7rCpm0tBWTaQqlI3X6uj3TbbzU/Nq7V1WZWW0ryH/GMm1p679Fh9F/4YEALFTJCshA7J9MSllQBA/JxGvjM9NlSrmb8DHGNTGdOmJxapYKll5gYvgsTfegHGydvW1TxkF5FN4uprk8ari+tQLMOVhUePEWM4B/9KRfkDJ7eqWqZhMRSC4LIfKyjSgA3h4ABBXLtU3aJDEk+R9kT9lBvFCQuQGi0QOqgqo2JuCtRj4m1dwCwKnU/IBsj+Qmf4YeHQNOixqHLBEBUjIrZDQfd37im9R/AG5/F/+3E3SELJRg2qKknBAugg1uYFqCzeScfrjy4W6aMAqWHUS3w4e6NhzYGeF8YKPNnAb6bevirS4knFfT8YJBigQYi6CrdRQpdSIvB4wALgwA1pg8EbwP1UnVdwNxwn6atYA9gXOQfO01PGIYJ4OY0hFcubigxaHYj7/8R4Zb34Q/+Y7hXfwO2+WG8rgn0WHWws/4Gys6+oPKc4iuj2iheTm8/BuCt5tAK+oJdwIgoghb5eDzhh6lBQnxPlURFM4JwP9qQEzodap9bmqjVVGp8UEk/W8ogICgV/sSDixhJ9QqkjQ6RHcRW7kCeDzeGH/N3Y0OpLDrffdn5x/flvhc0xnZ9odx+4p5D/onE3zR0/9jHXVjRxbW7+xL6WvvHB48MxMjFpfSAqpDZHNtx/nk+sa9+0o1oRZwPgkYHwQJcRYEOibDfxkJa8jtl/J65bLCJ9H8JGEEyilo0V0Lxp7ZeUg9RuwQqvRVtdnG9ObOwV3ZrI1ubqR1xlUkeo1G6ca1z+2pz255/nts48laZdSaXFYIhOnh4bvG29w1ji5YtFw4q0Du75zqrezFWwOvJhJgt6tEPGNYp2mpHUot1FR6xLoLFkeIYG32+BpS4jn5LqiYy4r2wwb8GLIn96imnkBr3oDzx149daYv3++m3Nq8NRzdbbC32oF4dDLPbtWuwu/eo1y5X/BuiIT9w5mD0xmdcpKff6/3PgDk/4ed2Yi8R9F/XZe+x1jZxtAvxmxQw9S0phFpD/FgJxoDjI/yyB2yyJdNnQuig45BiOvmyQWTitnURAH5SSzVt2Q/OU3Kz8eo9/UqHq6f7Jw/McP3zL4+AfHj/1lT6tMp+H86elV689tTbTOPTjQeEtni6MC61Rrxuemr3z26KOfvTa9sX+wTFUTqOm65/sHD719d5fGEarSSHkW9A144kIa0GGt6EU0UABwjlFU4izLXUWrmdPCY2qeI3R/hZ4XlQs+TLR78MCV/Ym2O17d9+67XTtXuc8+9C7+pGBiXcntF8Y2Pb6n7byvZ7b1zvshxvZfs9OPsBoUQSm0ColiW9bjgKyS8aqhAkrSRJd02gaR1QFYRaAZMg/gFylH4JsZIg0DKhNp9HJOD6sPsBDtpYLDrA/TRJHtOEK8oKRLL+2kicBaLABLhcsUjQ3kYQ2N39r8UsJTbtGpvcmBZlty78Z4aOPpUe1m7eCZep+C06j4uo6gpWX/WAKy8KB2C17jaOj0WKJrItZCrzXUJpgjPSGjTrk21aLV2msEOd6m9Wc298d3rG9mf/RjpVjfodIa7XZZ4RLn75hZlbl9NCH7CaV0NdRUKgtXmKq6NspcVSdUKnGCdQRjxDZRiOEPwccITyOd3lJKNnRKjK2U+Xy+GkZ/U/Unb7redegPe+58eXr6m0d7eo5+c3r65Tt7vlU/sD2Z3DZQXz+wLZncPlBPLVzKvzAw8EL+0qX81wcGvp6/9Nh7R2KxI+89Bt/R6JH3JL8HYKZfYz1Ii3jRWcZIfaOlgKTXIalM5zhrBQgV57mmuFwG3AgDFzDy1yAp/IslVBbFx05/nu8/Tt/hrf0rg1q9Cue+2HgcSTXROshvf8HeAagbQd0ktiwKikCAAoMzUCsgQAO8mnAYWbFBBLFdjVF7W1N3tDvgr47wEfDWKlxVRtpEy1XK4smDrITE3hsY7E2MVj717D7x2KEtWxNbF4aHF7Ym5rYcPibue3aqdSLt8mfHmqJjWb8rPdHWOtRkscdzcdJ2tTQNaeNbH9p46lKN77n5vntmmptn7umbf85Xc+nUxoe2xu/3AJB0z4pOpzjbnZjIeKgL/sxIXf1gu9vdPlhfN5LxE34yAfZ/u9hPnyAdhoAeoQ4x1Y4ZVgmIYwFEp0k+XE5IsmJnfJnEUzgeDQUDta5qgw53Up3yxf56H6z9CqydJiumYMVyWNH8J6yIERCTQK2fr9JzKI3T8hX99lJ2I6EWj5nMxW6TpM7ozb13S+7MbLwquS5y9M7MbU8Obzm/JW3qcURVKqF1UzY9neZtPcdm1+3tqeZbwElvSQWUCq8wrO7Zc45tqB8+0tc+vTpS4Xr6wOjCllhk05HVVapyq627IxTqGq5tGmmvOYiF1sHG5lxz5XV9edAr8GX6b2DvhFOelHo3IdCsT3QTcJEYBqIYNLrIcKXtq6mMxx30ediqgISb87DG67BGFWogM+k/OtMN/AS4cHwlyi8eU0h8ZcnrJFZFndDz2vqDmZ67ZpLttz41PnZhZ9LoaXYV3lOFHBcpq7tzUzw50em+e1/7VFqglLaw2eNvnHxgdP2FeTEFExKbpycjhQhnor/SNtPl9manEkdP13aPwf7HwPaPFk+jxsju64DfAfqSNmwoSNEsOBYDbkCzDEsD2ydNWsyOwral00LVyh6Q3id4fIIg50lPaw2sewrWDZPVWFgtGIDVzP/X1VxyIJikW0mv7J9LPrWimQS35F49T4+HooV9icaR2tmLc9FuALfE3KZ+Z0RXqQuJ61vT21f7hOxcdmrX3Bw1y3wohAuXlOVt2xeGtr10QDR7Gu3dFrtgD669tattustTU01tLdaf90OqeRH2ooK8uAJ7VUvYCzmR9/FL2MtL6VCCXV4id8yLG576+alCEv/w1M+f2vBWcufj44VPsXb88Z1JauGR370yzromLv3+4QPfvTt7lcme/B68cxNg31+zW5EDfKr3dRoQb/EkFygpoRXMKMix3H6GaKyEIQpR25fGl4dG3vC5a4tuBxz4elUWj8NIJ9+wUqEaCr+udagDc619Z7a1ddz2/MzM0/NtvWtxWt1Q/WT+H1zpyVTbbLfXk51qaZvJuulpo1fvqI5tuzgz8cKhbOfhV3eO/uh2/I86y9VMeteaYGjNjvbMzl5f3S1zBHMeAEZ7AP0rspMzRS3G7Ys9TGDOldYaqiIQXxkWXk+0KZ6i40DqH+CcAZsz5NRa6zJBp1pT5qyyyZSR9gMmn1NnckccgfFNG9x2VYVKU14Tbq7OSBgHQU2fod9HOmQTzeX4uiMOMF+Qr6B1UDPcdLxBOZ8uPLJgsLM/VesUcr3mA1kldz+Up5r8WSHt4jsFaq/WCOuDVagZ9ghyorjYBAUmWZwlzdOSs2iIb6MBGhf72SyrZolgTuTkjG63SW6AysAbxm04ch3p01AOTE4yvjljtD0UGjzQW9VSyVJBd21nvQ3LC9fodjVlMvSMDZ4cqSsvGzazpqah1PDxq2+TPfcDL31WOjeNiREdZikf4Ho9UH4IQRZ8hJV86GYeoRd8QR8h/e7rAYqI5A3Ty1wiFi9WeTzHPDv54bEnPvvW+OhLv32078TuMV9E5TOb431z3XMv3SF2Hr28a/Bu8bs6Ez5zrLuLUNHHPrsybQ6kPOsM5Rq1m7f0nPr+7YffvbfbK+Bqg3ZrQVaMvfOAI5+wZ6HqE9B2sazSpqcZVjo3KDbhyBHMjYdyMpqSIKR4aHfdODmqUy8f3ZFmrt5iRqjKYRYsArzF6BM4hW7lsU2pfS2XCSvP7DznL7denB06PRlJ7rw4OXmisZzx4raBw5Hw7vS954+zZ/Pf6c6lj1yZv+Od+/tWdWxw0+tLh3Vvv/Yi4K4A/vifrEBwVyC42/wJIicGBil3sGAjTP7zBqHeqlLiMBh4INqy6mLOSUg1qYAqwGAwT/9H5lWQEi4CXKfI1l0SD6Ob4lAXZ76n1z3xcP49g43hqN1PPSwrRPEP8M8mtMbCi3jYyA3SA4Wf1Cfyx6Q+CSmI3yn2SSykT5Is9UkmQKoeMaslJ/OYdEklz1IUDyDl8qU/gUeUgqBMRkm9IozDwRoXdmAHx+ndgrm8OlCMJ/qr7N2AD81iVINJOC2tim5YSV5aCUSwI7u0iklhXBFQMRJP5NDLJYNwkvoVr84ZbRfO32V2c3ZLup3KXi7cWoqlY8+8wMgmtYrRueOkLUFC6X8A0bYb2QAAAHicY2BkYGBglIrbuGH9rnh+m68M0hwMIOAVfGcWAxz8W8D6kLUPyGBjYALxAT5yCjkAAAB4nGNgZGBgY/jHACRTGCCAkQEVWAEAKXYBqwAAeJwdjj8vQ3EUhp/7O+c2kspdLHfUWqTW1p/EINFW4mIQg0hF0phEhGA0NbEgrdy5EZOJhM9gMjDhKxj6DQy87fDkyXnf4T2eMGM/3HpCOz4Ae6ESTsl0t2zAij0y51UuxE30RW53FKMPCE+UlXXtl6ywT67uaNhH7xxaiaa6a3tlSV71eTL7ZCu80Qkxl8F58HMmR9wz5jv0rE3Dt8m9zrKX5YQzURPPYlPs6Z81ueOzHMu79s2GD7ga/hr9aa/PRDghjcdZ125P+ZRPs+CLpKT/0EQs5wAAAAAApADUAPAA+wEtAUcBbQHPAj8CjwMDAx0DVQNVA68D6QRRBLsE3QT3BSEFkQXfBqcHGwdtCAMIcQiJCJ8I+QlvCa0KDQppCr0LIQtfC+8MOQxpDO8NHQ2bDb0OGw5HDq0O5w9XD48PvxAJEGsQ1xD3ETMRZxGvAAEAAAA7AFoABABEAAMAAgBQAF0AbgAAAPAKdQAFAAF4nH2Q3WrCMBiG32orbIMdbicycwMt6k7HwB/EiUoR8XAQbKuBNpFYGd7UznYhO97N7C0GwZOmJDx5vjcfaQA84hseLqPDeWGPvuO4gQCh4yZe0HfsMxM7DvCAT8ctesWk599x944vxx7a+HHcwD1+HTfxhj/HPtres+MAT96r4xb9x9KIrTmcrdrtS6F0ZmwhS2W0yMxJJ9FwUI1wJG2uSrMyhdSzOE1kLuLxpD9dL+biNnK726T2WDXrRd3bApYwENhyPeAMy5/bYY+STkEjo7coIGkUWdNX7kRKEGGIwfULMWLOImeyZGbFWZ3UmPEpU+Yla4I8xoQPPcUaC8xp6rrU1TbsanG83qzHG3XrTvwDhwtYLwAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } E7-2 E7-2 Supply the missing dollar amounts. Supply theInterpreTng Amounts Based on Income Statement RelaTonships Cases Purchases A $ 700 $ 100 $ 800 $ 300 B $ 900 $ 200 $ 800 $ 150 C $ 100 $ 200 $ 300 D $ 800 $ 600 $ 650 $ 250 E $ 1,000 $ 50 $ 900 $ - $ - Sales Revenue Beginning Inventory Cost of Goods Available for Sale Cost of Goods Sold Cost of Ending Inventory var isIE = false; var f1 = [['t3_1',671],['t4_1',1438],['t9_1',127],['ta_1',137],['tg_1',127],['th_1',137],['tp_1',132],['tx_1',132],['t11_1',165],['t12_1',113],['t1c_1',134],['t1f_1',144],['t1g_1',134],['t1j_1',276]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); } View the Answer #t1_2{left:60px;top:236px;} #t2_2{left:85px;top:236px;} #t3_2{left:60px;top:268px;} #t4_2{left:85px;top:268px;} #t5_2{left:55px;top:176px;} #t6_2{left:55px;top:188px;} .s1_2{ FONT-SIZE: 47px; FONT-FAMILY: BAAAAA-Carlito2; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-Carlito2; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACMMAA0AAAAANewAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAAAugAAAga6dMDJY3Z0IAAAAhQAAAAuAAAAOCX+AcJmcGdtAAACRAAABRIAAAp127YujGdseWYAAAdYAAAYQQAAI161BfCVaGVhZAAAH5wAAAAxAAAANq9kQCFoaGVhAAAf0AAAABoAAAAkBgIEn2htdHgAAB/sAAAA1gAAAOrY/xQmbG9jYQAAIMQAAAB4AAAAeP85CCptYXhwAAAhPAAAACAAAAAgAfYLc25hbWUAACFcAAABFgAAAhOXL44TcG9zdAAAInQAAAATAAAAIP+cAMJwcmVwAAAiiAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nGNgYGBmgGAZBkYgCSKYwaw+BhaGIiAtxiAAFGFjUGBQYTBgMGVwZwhgSGPIZyj5//f/f6A8RNwELl4EEv//loHp/3cGhv/v/l/9f/n/KgaYqSAgwAADXGDSnEGPQZpBlIFvAGxkYGQDeZqJlY2Dk4ubh5ePX0BQSFRMXEJSSlpGVk5BUUlZRZVXXUNTTUfPwNDI2MTUzNxSHWSEHgM6MIUxVDGkQMASxpBkYJAW5cOqZmAAAJLuOosAAHicY2BAA1sZOkGYVYmBgbWd+RIDw79t7PP+3mI1/P8JyH/4/9O/hSA+ABumEdgAAHicrVVpd9NGFJW8JI6TtLRZKKjLmIkDtUYmbMGASVMptgvp4kBoJegiZ+vKd36Dfs1TaM/pR35a7x07ZjNtT09zcvzuPF3Ne+/OmydxjKj0KBDXqAMlz/pSWn0opc6juKZrXhYr6ffjmmwmnpIWUStJlMx2BgdygcvZjpI1gjUynvVjdaSybKCk2o9TeBSfVYnWidZTL02SxBPHTxItTj8+TJJACkZhn1J9gBTKUT+Wsg5lSoderZaImwZSNBr5qIO8vBcqPjmedQuNGmCkMpVhu3ytXM924rTvDe4lsU7wbPN+jAcesx+FCqRkZDryj52CE6VhIGUsdaiVODocSGHvSNx9BJRSI5Apo5hVobP/Z8nZU9xBNtOElHTLZjU9ZDi+ziuleqo6mR5QRVu041EYUR7Cn8SXYl0PtoYvV0xeLnfEHWwFMmPgUkpmorskAugwkSpX97CqYhVI1Sg5ZTNUSGgfsWQ2SlWW4jxQQyCzZns3zqfdrWRF5g/1k0DmzPZOvH1/6PRq8C9Y/7zJnbnoQZzPzUXIIJSqn4gTSaEe5jP8qeJH3GUIU6z349yFWjieMIPWCDvTqGm8doK94XO+UqhbT4JKesi/B+/Lyr1Bz9xxFjR0icTZOHZd1x7OW8iy3NmNHZnToUoR8Y/5edeZdcIwS/P5si+Pfe8clHkbxLf8QE6Z3KV9x+QF2ndNXqRdMHmJdhGS0y6ZfIp22eTTtKdNXqF9z+QztGeMVPx/GfssYp/BOx5i076P2LQfIDbth4hN+xFi0yrEpq0hNu05xKbViE27YlTb9kfdIOx8qiJInUZWWTTmSqMWyKqRui919Oh5dGBPvUFUPWhplT2I/5aBrgjkwlhpd1nON8RdWrPFffyiEC8/ahh1zebpG0eKEzbHtZgYlH5n+XeHf1sbupU33CVUYlA3Ep2cJ3pz0AokMM3T7UCa/0RFH+2DfhFH4SzXVVP1eL8h4Z0s6+keLmm853GyYI40XXdpEfHXDLJCj+PfUmSq4x9mTa1UO8Nel54/Vs3hHlLikOr4SlJe2c2d+GlBFZX3tLBaPJuEnCoVTCdt2bqLCxS9ehtSDo/hvCxE6YGWYjQ4wONCNPCAUw6MV98ZICUMad3F2WlE6KIuGBsF+00Iou2IwpOU2pfRSOXXdsWOrKhuk8AvJpina8nzWDjyy9RAwVNeHWmg25DminVLBfdEqa7uMRhP66qVjAWMFHV246Zq47PCjEdOxVzGktexujNs9c6+Hp7SpLYdHYtm714bhY9OziXlB+3V+k7Ocd1o1aRkXQzWdtLMV91F3LrrY3f/RXfrZfZEzg0ja/7ETW8aueRnCMxOQbavc3AmTVkF9da4vU6kZWdp9HkTN2S4XdvwKxP+hz7s/V+tx/Q5VNoac+OFw64loxxvU4yT+jdYf02PBBjVMS75E5S8NLyZxw4v4UJTDC7i5hv8n2JGuYsLEgCHRi7CRFStA11VF5+iE522DHtRIsCOOXacNkAXwCXomWPXej4DsJ475NwGuEsOwTY5BJ+TQ/AFOTcAviSH4CtyCPrkEOyQcwvgHjkE98kh2CWH4AE5GwBfk0PwDTkEMTkECTk3AR6SQ/CIHIJvySH4zsjlsczfcyHrQD9YdB0otf2ERQuLgZErY/YeF5a9bxHZBxaRemjk6ph6xIWl/mgRqT9ZROrPRq6Nqb9wYam/WkTqbxaR+tj4UjmU4kr/Cb8fwV/jAfgzAAB4nK1aeXRb1Zm/9y2SbG1+2iVLsp+etVmLF1mSJdvysyzZTmyHOLITO453J3F2kwTIShICIQRIYrZACmUrLZRQEs5ApzBtGZh2FnqmLcOZOZxOO4X2zJlhpueU9g9mIFLmu0/ykqRMO+eMTyz5vfvufd/9lt/3+74bxKAAQvSH7FbkRgnUhjrQ6dcRphBO916uXjssNiGawhSN5xBmKMxsQQhRNKJGEYNYBcOOorIy2QCSyTSdSKGQDyC5XC3PVIqNN06ToTIkKxu5afrypBFR3SFynMHnEWrtNeWWgD5FRxqdlNGgYbRY8HpSTLTJI7g0lODy6ptSVGkQLsMU5jk+Dr+fWprTfcG22R6vI9BUxzPcHWrGFoiGqrIxb8xrU1pVExUOr9nktXOc3Wsyex0VhVfob11d10hnr77F9BvdjgpXaiQW7UvUumtMs7fyDX5PKO6tT3BGzpi3mnwOjnP4YKK0ADPz+RNRJg+7wmgB9PgQ60JKFBYDcA27p8h+2QEZZllVJ6JpZgAxjJrJwF0lUnLkR24IYCMITn7lPEcv5L+N/6ngp1bjPGJdjxQGzhUyj7Cua9fQNKz/I1jfhehpYiGmGSGnWIkwpgbgVRS8ASE1ymCMdVgn+Bh7QJJr+Uf+GovZ7GSmAe7WwmqwLuL+4BrwySFO8DIcSGeQybEGBzCOxXmXpw3Tj2jk+d+rgsIhymRx5rdzFta1utqv+eJNi8DE61yWir1IenMv/i/KTz2IaGQWDXADo35yfwCGcJaroLiAHvbdi39RcFEPPgpDsMtNINe32Qayy01kl3IjQg1iOIQxrcLgUmlQI8oxsC1DpyQ2oig1laGwWzAaOA1uoBpYW6D4/m5Y6zlYq56sEIQVlP/LChjVuAz6CjWqx/WsNoBLziXHKRzhG00OzEebYnGcoqNNYYp4oVyD6+CSkuXOzrUEVk1GC696+gX8bGX11Rc0HL7QlEtWC63r6uvWpoLlCq+wQbVq9zm2oXH89IZVR/fuiheeVaqqbJsTnLcCfy06PbMlkVifsDsi3bUuI6sZvX+8nuwhfu139GbYQytqE5OtGLMOzNCwB4RpjOg5RDOYhvCCgRxiWdgRw1A52JGRyiSbvW5XdaVV4GVgRhkJEyK30eCUFcPG443D5mCjkcYUBduSRaWoMplph9am9bfkkvFc3B7Jbd+9PRdp3vHk7MH3uqNyo0Zf1zWTTW5s50tDTTML49teFZmcvcpdVRVfVRvviXh8kf75gQ0X5sWxW9Yr1f4Gvyu1IdrSFxE8DWtvH86e3NzWBepHR699Sr9Iv48sqO8NrRxwhwCPC4BHzwJwYC1xSCpHfBNsVCmaF+/CNRmic2BNIw3goYIrC7K4eb0g0wcwZzBFGmNxLsLBPuvAf8n2oxwOzWzuPRG/vF1noSrav7Jl7cF1tfT7+YXdB7tT1E+vhjn9XNdQdOq+HLWH+BCFHiy8QX9C/wqZkQftElX2ShnNMiZMsRTI6QQ5HXLMMCgHzo1ALJYtar9Thmmao0FiHpEB8hDOwe7MNz8zIuqtFoSqnRaP1QMvMvvcvEIX0HNgiipctNCiwTjsksk5J9yLET98cJveQnGpZ+YGT082JXc9OT1yZwOm1x1tCu/JnFrg20cLb7B2Tr+3d1PHnW8e2vnWfWtaY4V1zDN9XQVfe+SdP5s4vcFXjJWH4aOTPQuxahGNoGKsWYYCGoGYFaBTgcOdl9mzn++FB2GOEnSzALYzoUrRomEl45GpktE4lAm6XLQuIGGHHhO/0juxOYXj+hRuwfgJRaXt5IuFM4+bLbJfK7SsTKv4uczOPVD4pcGE76YfN2nyTxprjaaAkZrWGsn7XNc+pc6wWsCGVWJXGcRzFWZl1RixdBoBxmIZO4cIhjEgAz0AjiEZBA3KwTZGAEbkqLSY9DquQquWMciFXQptgHV5osRF2kpiSUhMfEeKhCoQHj9766F5rfGinzJWbMTqwu/jQZvbpleUKdmm0CHtXQepQYO+y4BDWl3hyvH8n7e2anQaRdlgbZjIfE7Cs7Pw/pBYa6ApyAoQvEhD0kHJIcClJe9GREqjYBQ4cOAIeG7J9KB2kvfA7ucutz06DS7rvzy9ufd4jD2bfze9hnhrfoHas+tQT3u+gfhsL2DGFfojyOhh1CNmzVh6KcQQpqk5yMSYluFRBSQllCOqMZNoYnKAHEYm4/VAbvB7wt6wo9Kg06rL5MiN3WWLgCgTeCe9rBxaiipADTOIx4NDUubhx3andJb8Xio8MJ8VxzvDnLJC1siPbNkV3XLpaFf7HS/vPnxORxld4hj9UXL+uW3+yk33bQw5ahxlCtGbcOsy97x7bMuVk6uPnz/aMtPtK/om+xHsJ4DWf7tWI4M8uggSJpkUfIDqJMgUcpamaTWJOpsUdTIp6ohLmpcHR0QtDAZQADSt93j5MhNRthRqNHFS6XNR6ZqV6n94zmCmtPa2rrWhzccqjdnBycZnXr08NxVc0yJcnhoX58P0+5x+lo/7TbvHYn2N5rdfI4bZe5ujZX2C/HXb3s6WvE/Kc7vBOTazJ0iegz9dSI9ItjNQ/408ogD2kIBNI7mydimxG/XKMsxgRsdWBhZjFuJvKWa1Xxaz9PtXQTbijzuZ83iGPQ3v00l6kHxQgzK+GkjHuMSmoiV2hWcMQshqDfIGAx+0WkOCgVVaQ+QqZLWFXAaDK0TW7IK4/Gewz4ocRTFfmqPM/z85ivqGyqIVGjrD3lTQ4ksPDQ+lfeGRk0NTT8f9ChOnq4n0xMKdQZM/PTQylPYHB4+sHX2kia43mawmkyfi8DTWOJy+ZK4ls2+wPh1NqzWVfKUtkKz2Rd32Km/bcHti65pwawz29wCJYdgfyVFmmRTCpRwlUYki9C9GMeQoyfduju+lHCUY3XwxxFcA/LKbPUBAXdv+pJScLkO+uitG/KqUmIqh3t2er5esLBaeoZ+hP0Zx1ItG0AWxQoHlinqOouTttRR4PEhqA0mD5VgOjFQOzJtGLOSwUSS5i0KBcmVFDJDJJAywMrCFOti1AmHF3M3T/uCMEdHe34dRbqBvpH+kpyvVKvAWc4WGoVEcx5UEPExm3mjQYlPRql4NXjYx8bdYPIwXP1MUbgozxUcks2OS7IhuyA38923bAxj55qqi4yf6xZjDHhuev21+ONZ66/Nbt17c0jjU669vbc3eEh2/C+92i4PjU6GGlLN9ujO9paum8MupmZmpiRlrwyr6Y7utQ5Bpxb6e/etCWn3AKLgqmDJDw1Cm/fZN8dqe8UjPrEOfjteOV/lPjfTszwW/+HchaFXKGLltVYRv9ltsoXaqZeeGkW3bRgLdTQ6CvasBe78GeE/4wryoMmCWslcyNCPxhRrCF6S4XiQB5s4SfZBRUuQSvnD9uAx0rV7mD0YMyjZZLbjEF0xGXYVChszYDMmMX0F1SmECacRNeFAYl/RHt4B36VJfncvdO9mU2PkVQhkuF/pzh6N1uzvvOc+nNnL62whfeAv4wuk1LXHK8fneY/1Z/GGJMPjRYo75DcSEHnlRUPQvcWpwd+Bqi6IaDRhVOQxeo1dZhvRYL1sm1otC6otxvRj2FOXYcelAR8eBSzt2vHKwo+PgKzu6t3cLAnz07CDfO+iPuk++uW//mye74Xv/Pvi+erEBSPWG0+ONjcXvhiJ3GwRuuQG4mx8q2/tEZTUw5zqGksmpUvj6EFBpmoGcCHWGjJKDk9MliCrDMhlYRbFoleCXP6qQDEQmLBvIFqjFqKG+NhFI1LiKrKNcgfzYX75opKXMGV8qauH2Iha4G8mAhpYMVmazsybPqrWb4omZ3kD72V9/fWosNZQKmXU2RfXAW3vXHV8fKmSCq9Mtjtu+tjVsrU1WWEeFuEdf1TGVTu4YjDK9e/dVe6p1muY1/dHp07n8uZ06vsH5d6yjvsPniQscRPtJUNhzoCsLeqD3cgiUo4RyCwHaAXilK8kVvXg1UiS+ekLKl9APS4VtZXFuEQHpRUcwLw2LTkAT0CQzdyNGFh8YWcJIvuZGjDSZ5ZAfJF3JuZOb7WZKFbp7rCpm0tBWTaQqlI3X6uj3TbbzU/Nq7V1WZWW0ryH/GMm1p679Fh9F/4YEALFTJCshA7J9MSllQBA/JxGvjM9NlSrmb8DHGNTGdOmJxapYKll5gYvgsTfegHGydvW1TxkF5FN4uprk8ari+tQLMOVhUePEWM4B/9KRfkDJ7eqWqZhMRSC4LIfKyjSgA3h4ABBXLtU3aJDEk+R9kT9lBvFCQuQGi0QOqgqo2JuCtRj4m1dwCwKnU/IBsj+Qmf4YeHQNOixqHLBEBUjIrZDQfd37im9R/AG5/F/+3E3SELJRg2qKknBAugg1uYFqCzeScfrjy4W6aMAqWHUS3w4e6NhzYGeF8YKPNnAb6bevirS4knFfT8YJBigQYi6CrdRQpdSIvB4wALgwA1pg8EbwP1UnVdwNxwn6atYA9gXOQfO01PGIYJ4OY0hFcubigxaHYj7/8R4Zb34Q/+Y7hXfwO2+WG8rgn0WHWws/4Gys6+oPKc4iuj2iheTm8/BuCt5tAK+oJdwIgoghb5eDzhh6lBQnxPlURFM4JwP9qQEzodap9bmqjVVGp8UEk/W8ogICgV/sSDixhJ9QqkjQ6RHcRW7kCeDzeGH/N3Y0OpLDrffdn5x/flvhc0xnZ9odx+4p5D/onE3zR0/9jHXVjRxbW7+xL6WvvHB48MxMjFpfSAqpDZHNtx/nk+sa9+0o1oRZwPgkYHwQJcRYEOibDfxkJa8jtl/J65bLCJ9H8JGEEyilo0V0Lxp7ZeUg9RuwQqvRVtdnG9ObOwV3ZrI1ubqR1xlUkeo1G6ca1z+2pz255/nts48laZdSaXFYIhOnh4bvG29w1ji5YtFw4q0Du75zqrezFWwOvJhJgt6tEPGNYp2mpHUot1FR6xLoLFkeIYG32+BpS4jn5LqiYy4r2wwb8GLIn96imnkBr3oDzx149daYv3++m3Nq8NRzdbbC32oF4dDLPbtWuwu/eo1y5X/BuiIT9w5mD0xmdcpKff6/3PgDk/4ed2Yi8R9F/XZe+x1jZxtAvxmxQw9S0phFpD/FgJxoDjI/yyB2yyJdNnQuig45BiOvmyQWTitnURAH5SSzVt2Q/OU3Kz8eo9/UqHq6f7Jw/McP3zL4+AfHj/1lT6tMp+H86elV689tTbTOPTjQeEtni6MC61Rrxuemr3z26KOfvTa9sX+wTFUTqOm65/sHD719d5fGEarSSHkW9A144kIa0GGt6EU0UABwjlFU4izLXUWrmdPCY2qeI3R/hZ4XlQs+TLR78MCV/Ym2O17d9+67XTtXuc8+9C7+pGBiXcntF8Y2Pb6n7byvZ7b1zvshxvZfs9OPsBoUQSm0ColiW9bjgKyS8aqhAkrSRJd02gaR1QFYRaAZMg/gFylH4JsZIg0DKhNp9HJOD6sPsBDtpYLDrA/TRJHtOEK8oKRLL+2kicBaLABLhcsUjQ3kYQ2N39r8UsJTbtGpvcmBZlty78Z4aOPpUe1m7eCZep+C06j4uo6gpWX/WAKy8KB2C17jaOj0WKJrItZCrzXUJpgjPSGjTrk21aLV2msEOd6m9Wc298d3rG9mf/RjpVjfodIa7XZZ4RLn75hZlbl9NCH7CaV0NdRUKgtXmKq6NspcVSdUKnGCdQRjxDZRiOEPwccITyOd3lJKNnRKjK2U+Xy+GkZ/U/Unb7redegPe+58eXr6m0d7eo5+c3r65Tt7vlU/sD2Z3DZQXz+wLZncPlBPLVzKvzAw8EL+0qX81wcGvp6/9Nh7R2KxI+89Bt/R6JH3JL8HYKZfYz1Ii3jRWcZIfaOlgKTXIalM5zhrBQgV57mmuFwG3AgDFzDy1yAp/IslVBbFx05/nu8/Tt/hrf0rg1q9Cue+2HgcSTXROshvf8HeAagbQd0ktiwKikCAAoMzUCsgQAO8mnAYWbFBBLFdjVF7W1N3tDvgr47wEfDWKlxVRtpEy1XK4smDrITE3hsY7E2MVj717D7x2KEtWxNbF4aHF7Ym5rYcPibue3aqdSLt8mfHmqJjWb8rPdHWOtRkscdzcdJ2tTQNaeNbH9p46lKN77n5vntmmptn7umbf85Xc+nUxoe2xu/3AJB0z4pOpzjbnZjIeKgL/sxIXf1gu9vdPlhfN5LxE34yAfZ/u9hPnyAdhoAeoQ4x1Y4ZVgmIYwFEp0k+XE5IsmJnfJnEUzgeDQUDta5qgw53Up3yxf56H6z9CqydJiumYMVyWNH8J6yIERCTQK2fr9JzKI3T8hX99lJ2I6EWj5nMxW6TpM7ozb13S+7MbLwquS5y9M7MbU8Obzm/JW3qcURVKqF1UzY9neZtPcdm1+3tqeZbwElvSQWUCq8wrO7Zc45tqB8+0tc+vTpS4Xr6wOjCllhk05HVVapyq627IxTqGq5tGmmvOYiF1sHG5lxz5XV9edAr8GX6b2DvhFOelHo3IdCsT3QTcJEYBqIYNLrIcKXtq6mMxx30ediqgISb87DG67BGFWogM+k/OtMN/AS4cHwlyi8eU0h8ZcnrJFZFndDz2vqDmZ67ZpLttz41PnZhZ9LoaXYV3lOFHBcpq7tzUzw50em+e1/7VFqglLaw2eNvnHxgdP2FeTEFExKbpycjhQhnor/SNtPl9manEkdP13aPwf7HwPaPFk+jxsju64DfAfqSNmwoSNEsOBYDbkCzDEsD2ydNWsyOwral00LVyh6Q3id4fIIg50lPaw2sewrWDZPVWFgtGIDVzP/X1VxyIJikW0mv7J9LPrWimQS35F49T4+HooV9icaR2tmLc9FuALfE3KZ+Z0RXqQuJ61vT21f7hOxcdmrX3Bw1y3wohAuXlOVt2xeGtr10QDR7Gu3dFrtgD669tattustTU01tLdaf90OqeRH2ooK8uAJ7VUvYCzmR9/FL2MtL6VCCXV4id8yLG576+alCEv/w1M+f2vBWcufj44VPsXb88Z1JauGR370yzromLv3+4QPfvTt7lcme/B68cxNg31+zW5EDfKr3dRoQb/EkFygpoRXMKMix3H6GaKyEIQpR25fGl4dG3vC5a4tuBxz4elUWj8NIJ9+wUqEaCr+udagDc619Z7a1ddz2/MzM0/NtvWtxWt1Q/WT+H1zpyVTbbLfXk51qaZvJuulpo1fvqI5tuzgz8cKhbOfhV3eO/uh2/I86y9VMeteaYGjNjvbMzl5f3S1zBHMeAEZ7AP0rspMzRS3G7Ys9TGDOldYaqiIQXxkWXk+0KZ6i40DqH+CcAZsz5NRa6zJBp1pT5qyyyZSR9gMmn1NnckccgfFNG9x2VYVKU14Tbq7OSBgHQU2fod9HOmQTzeX4uiMOMF+Qr6B1UDPcdLxBOZ8uPLJgsLM/VesUcr3mA1kldz+Up5r8WSHt4jsFaq/WCOuDVagZ9ghyorjYBAUmWZwlzdOSs2iIb6MBGhf72SyrZolgTuTkjG63SW6AysAbxm04ch3p01AOTE4yvjljtD0UGjzQW9VSyVJBd21nvQ3LC9fodjVlMvSMDZ4cqSsvGzazpqah1PDxq2+TPfcDL31WOjeNiREdZikf4Ho9UH4IQRZ8hJV86GYeoRd8QR8h/e7rAYqI5A3Ty1wiFi9WeTzHPDv54bEnPvvW+OhLv32078TuMV9E5TOb431z3XMv3SF2Hr28a/Bu8bs6Ez5zrLuLUNHHPrsybQ6kPOsM5Rq1m7f0nPr+7YffvbfbK+Bqg3ZrQVaMvfOAI5+wZ6HqE9B2sazSpqcZVjo3KDbhyBHMjYdyMpqSIKR4aHfdODmqUy8f3ZFmrt5iRqjKYRYsArzF6BM4hW7lsU2pfS2XCSvP7DznL7denB06PRlJ7rw4OXmisZzx4raBw5Hw7vS954+zZ/Pf6c6lj1yZv+Od+/tWdWxw0+tLh3Vvv/Yi4K4A/vifrEBwVyC42/wJIicGBil3sGAjTP7zBqHeqlLiMBh4INqy6mLOSUg1qYAqwGAwT/9H5lWQEi4CXKfI1l0SD6Ob4lAXZ76n1z3xcP49g43hqN1PPSwrRPEP8M8mtMbCi3jYyA3SA4Wf1Cfyx6Q+CSmI3yn2SSykT5Is9UkmQKoeMaslJ/OYdEklz1IUDyDl8qU/gUeUgqBMRkm9IozDwRoXdmAHx+ndgrm8OlCMJ/qr7N2AD81iVINJOC2tim5YSV5aCUSwI7u0iklhXBFQMRJP5NDLJYNwkvoVr84ZbRfO32V2c3ZLup3KXi7cWoqlY8+8wMgmtYrRueOkLUFC6X8A0bYb2QAAAHicY2BkYGBglIrbuGH9rnh+m68M0hwMIOAVfGcWAxz8W8D6kLUPyGBjYALxAT5yCjkAAAB4nGNgZGBgY/jHACRTGCCAkQEVWAEAKXYBqwAAeJwdjj8vQ3EUhp/7O+c2kspdLHfUWqTW1p/EINFW4mIQg0hF0phEhGA0NbEgrdy5EZOJhM9gMjDhKxj6DQy87fDkyXnf4T2eMGM/3HpCOz4Ae6ESTsl0t2zAij0y51UuxE30RW53FKMPCE+UlXXtl6ywT67uaNhH7xxaiaa6a3tlSV71eTL7ZCu80Qkxl8F58HMmR9wz5jv0rE3Dt8m9zrKX5YQzURPPYlPs6Z81ueOzHMu79s2GD7ga/hr9aa/PRDghjcdZ125P+ZRPs+CLpKT/0EQs5wAAAAAApADUAPAA+wEtAUcBbQHPAj8CjwMDAx0DVQNVA68D6QRRBLsE3QT3BSEFkQXfBqcHGwdtCAMIcQiJCJ8I+QlvCa0KDQppCr0LIQtfC+8MOQxpDO8NHQ2bDb0OGw5HDq0O5w9XD48PvxAJEGsQ1xD3ETMRZxGvAAEAAAA7AFoABABEAAMAAgBQAF0AbgAAAPAKdQAFAAF4nH2Q3WrCMBiG32orbIMdbicycwMt6k7HwB/EiUoR8XAQbKuBNpFYGd7UznYhO97N7C0GwZOmJDx5vjcfaQA84hseLqPDeWGPvuO4gQCh4yZe0HfsMxM7DvCAT8ctesWk599x944vxx7a+HHcwD1+HTfxhj/HPtres+MAT96r4xb9x9KIrTmcrdrtS6F0ZmwhS2W0yMxJJ9FwUI1wJG2uSrMyhdSzOE1kLuLxpD9dL+biNnK726T2WDXrRd3bApYwENhyPeAMy5/bYY+STkEjo7coIGkUWdNX7kRKEGGIwfULMWLOImeyZGbFWZ3UmPEpU+Yla4I8xoQPPcUaC8xp6rrU1TbsanG83qzHG3XrTvwDhwtYLwAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } $ 400 $ 500 Gross Proft var isIE = false; function load2(){ }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
For events A and B, find the formulas for the probabilities of the following events in terms of quantities P(A), P(B), and P(AnB).
What have been some prominent examples of corruption in business, as defined by the UN Global Compact, and what were the consequences?
1. What is discrete probability distribution? 2. What conditions must be satisfied in a discrete probability distribution?
A genetic experiment involving peas yielded one sample of offspring consisting oi 436 green peas and 143 yellow peas Use a 0.05 signicance level to...