PV FV Nper Coupon rate Calculating the rate IRR Effective rate Effective yield 104 100 10 6 25 5 72 1 rate times times 1
PV FV Nper Coupon rate Calculating the rate IRR Effective rate Effective yield
PV FV Nper Coupon rate Calculating the rate IRR Effective
Coupon rate Calculating the rate IRR Effective rate Effective yield rate times times
PV FV Nper Coupon rate Calculating the rate
IRR Effective rate Effective yield rate times times
PV FV Nper Coupon rate Calculating
PV FV Nper
PV = FV = Nper Coupon rate Calculating the rate IRR = Effective rate = Effective yield = 104 100 10 6.25% 5.72% (1+rate/times)^times - 1...

Category:
Words:
Amount: $25.31
Writer: 0

Paper instructions

Hi, you just helped me with this question below before. I just have a additional one, how would you go about setting this problem up in a table in excel from payments 0 to 40? ( Polycorp debe0ntures are selling for $104 (FV = 100) and mature in ten years. The coupon rate is 6.25%pa, with coupons paid quarterly. What is the effective annual yield on the debentures? ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:108px;top:75px;} #t2_1{left:365px;top:75px;} #t3_1{left:108px;top:91px;} #t4_1{left:365px;top:91px;} #t5_1{left:108px;top:107px;} #t6_1{left:371px;top:107px;} #t7_1{left:108px;top:123px;} #t8_1{left:354px;top:123px;} #t9_1{left:108px;top:155px;} #ta_1{left:108px;top:172px;} #tb_1{left:354px;top:172px;} #tc_1{left:108px;top:188px;} #td_1{left:333px;top:188px;} #te_1{left:333px;top:204px;} #tf_1{left:108px;top:220px;} #tg_1{left:353px;top:220px;} .s1_1{ FONT-SIZE: 47px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } .s2_1{ FONT-SIZE: 47px; FONT-FAMILY: CAAAAA-Carlito-Bold1; color: rgb(0,0,0); } @font-face { font-family: CAAAAA-Carlito-Bold1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAABOgAA0AAAAAIcgAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAAAswAAAkJOfn83Y3Z0IAAAAgwAAAAvAAAAOCbnAmBmcGdtAAACPAAABRIAAAp127YujGdseWYAAAdQAAAJngAAD6KtuOrLaGVhZAAAEPAAAAAzAAAANq8l1EJoaGVhAAARJAAAABsAAAAkBgID7GhtdHgAABFAAAAAWAAAAFhQrwTfbG9jYQAAEZgAAAAuAAAALi6iKjZtYXhwAAARyAAAACAAAAAgAccLam5hbWUAABHoAAABHQAAAkyex49bcG9zdAAAEwgAAAATAAAAIP+cAMJwcmVwAAATHAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nGNgYGBmgGAZBkYgycBoA+SBWGsYWBgmAGk5BgGgCB+DAoMqgx6DKYMFgy2DK0MaQyZDDkMJQxlD5f+///8D1aHKJ6PK/3/1/8P/p//vAOHl/3sYGP4v/r/o/8T/k/9PgtqGDATQ+CwM/EBVTIPOPQyMbKAAY2JmYeXk4ubh4xcQFBYRRVPMBSLggsIQSpCBQQTZZHQb0ezjZwZaxsMA9DQEsDJwMjBw49VDNwAADTtOSAB4nGNgQAWMbAyHQJjVgIGBdS7zQwaGf/vY5/29xWr//xOQ//H/x3/LQHwAAXsRYQB4nK1VaXfTRhSVvCSOk7S0WSioy5iJA7VGJmzBgElTKbYL6eJAaCXoImfrynd+g37NU2jP6Ud+Wu8dO2YzbU9Pc3L87jxdzXvvzpsncYyo9CgQ16gDJc/6Ulp9KKXOo7ima14WK+n345psJp6SFlErSZTMdgYHcoHL2Y6SNYI1Mp71Y3WksmygpNqPU3gUn1WJ1onWUy9NksQTx08SLU4/PkySQApGYZ9SfYAUylE/lrIOZUqHXq2WiJsGUjQa+aiDvLwXKj45nnULjRpgpDKVYbt8rVzPduK07w3uJbFO8GzzfowHHrMfhQqkZGQ68o+dghOlYSBlLHWolTg6HEhh70jcfQSUUiOQKaOYVaGz/2fJ2VPcQTbThJR0y2Y1PWQ4vs4rpXqqOpkeUEVbtONRGFEewp/El2JdD7aGL1dMXi53xB1sBTJj4FJKZqK7JALoMJEqV/ewqmIVSNUoOWUzVEhoH7FkNkpVluI8UEMgs2Z7N86n3a1kReYP9ZNA5sz2Trx9f+j0avAvWP+8yZ256EGcz81FyCCUqp+IE0mhHuYz/KniR9xlCFOs9+PchVo4njCD1gg706hpvHaCveFzvlKoW0+CSnrIvwfvy8q9Qc/ccRY0dInE2Th2XdcezlvIstzZjR2Z06FKEfGP+XnXmXXCMEvz+bIvj33vHJR5G8S3/EBOmdylfcfkBdp3TV6kXTB5iXYRktMumXyKdtnk07SnTV6hfc/kM7RnjFT8fxn7LGKfwTseYtO+j9i0HyA27YeITfsRYtMqxKatITbtOcSm1YhNu2JU2/ZH3SDsfKoiSJ1GVlk05kqjFsiqkbovdfToeXRgT71BVD1oaZU9iP+Wga4I5MJYaXdZzjfEXVqzxX38ohAvP2oYdc3m6RtHihM2x7WYGJR+Z/l3h39bG7qVN9wlVGJQNxKdnCd6c9AKJDDN0+1Amv9ERR/tg34RR+Es11VT9Xi/IeGdLOvpHi5pvOdxsmCONF13aRHx1wyyQo/j31JkquMfZk2tVDvDXpeeP1bN4R5S4pDq+EpSXtnNnfhpQRWV97SwWjybhJwqFUwnbdm6iwsUvXobUg6P4bwsROmBlmI0OMDjQjTwgFMOjFffGSAlDGndxdlpROiiLhgbBftNCKLtiMKTlNqX0Ujl13bFjqyobpPALyaYp2vJ81g48svUQMFTXh1poNuQ5op1SwX3RKmu7jEYT+uqlYwFjBR1duOmauOzwoxHTsVcxpLXsbozbPXOvh6e0qS2HR2LZu9eG4WPTs4l5Qft1fpOznHdaNWkZF0M1nbSzFfdRdy662N3/0V362X2RM4NI2v+xE1vGrnkZwjMTkG2r3NwJk1ZBfXWuL1OpGVnafR5EzdkuF3b8CsT/oc+7P1frcf0OVTaGnPjhcOuJaMcb1OMk/o3WH9NjwQY1TEu+ROUvDS8mccOL+FCUwwu4uYb/J9iRrmLCxIAh0YuwkRUrQNdVRefohOdtgx7USLAjjl2nDZAF8Al6Jlj13o+A7CeO+TcBrhLDsE2OQSfk0PwBTk3AL4kh+Arcgj65BDskHML4B45BPfJIdglh+ABORsAX5ND8A05BDE5BAk5NwEekkPwiByCb8kh+M7I5bHM33Mh60A/WHQdKLX9hEULi4GRK2P2HheWvW8R2QcWkXpo5OqYesSFpf5oEak/WUTqz0aujam/cGGpv1pE6m8WkfrY+FI5lOJK/wm/H8Ff4wH4MwAAeJyVV3tsW2cV/8797sOOEzv3On4/r2/8vE5sx0mcOk3iJk7Xd5o5VZcm6YPStKRNRh9U7Qqs6rqxdhKPwUbXqmMDtK2oGt2jA23aBtLQNA2YBhJIRQJVCCEkJNTtL7rU4XzXSfqm25Xs6/vdc873nd/5nYcJTxKE0DnhINFIgXSTPvL4RQIcgf7VF7zrHyi1E8oBR2EXAZ4DfpIQwlHCjRGeCCZeGCNmszhMRNE6QEwmaZhIUoNU9pXablUTiZmI5tHb1K8rjZYa+npluSkR01L+SJ1bt/dCvi3IOZqsvA20eKyX72iPaRErp0Xi9vZebv4lPrZyoMpqAT//6Pr2tuUzaxLeZFaPCM6XFdERz+mBZCrSonptzY0rHNG2oL8t6sC7P4j36i/pn2eTy+ia2df5DS1Lo+UtxY41S5JaxDE23dye0uIZNRSrt9UHr61aUAvk2D3Hb716cpD/N3oE5CBi+LyQJRbSWtLxGT3nmK/CsAiCUD9AKOWHCc838GVctRCLzC6pSQcHHpp9JFWmz137K5yrbuQ0mP2TkP24+vwH1dMfo1UgTYTw7ws/Il3kvdUXbBgWWyNwAP0AEixrBij5Sja88Y0gAFdbHa0JqrjAQYUHAOuAGSSJDIuUI8Q2YKnjTKYGU9m3+kIEBZNEEPgKnhEjyTTI3RVKceYismTsus4dJUdHS3b0t4t0FTpl2RGPOqJRZ71bz8vxVuiBfIcRRadLsgKLawDUxRUjrmwp79BkTVblZwYD2qNtE4+NhItBkdO9sWLSARvnF4QGh6eBrfz9L9XqKzRmFYL+nfkNJ7bm60wPB2RFv69T37Dh8a15s/mbVqWOV/QVHWtfn71EY7OXkJGkb+4K/YBeITGSIUcuuhln+2v4xQmGEii3CxkMVIQxEwaUVCQgxMWAMtx38AYon0PSzSPP3Yk4ED0VzyQyQb+zSbZZzCQGMbNNhwVKq0Gab2NQhMBKGcEZMK6IKKntrRzn2/zsvpLY4JKvvSwm+jcVCsM9WZdfWZn88u6Z/M5Xj6/uP3LhwLaZRvipK7eKXunZ/9KeQNRpXjFVVn0hn2tzti/aWP7W+4/seO3RdRf37tTXLdWIweMC4lBGHFLkK6W6FIDAoODmoWhGCQqE7mK5TblJZIhQQQbcgsO9xRgIv8A0x2QWHTqw4Lca0XY0OW/3mtGB+6/F2WQPJwup9rVtnqmJXDGhugKNqxKbtmzLjDy1t7+498WZXc/2UZNVdvqc6fsPrjzzol/1M1djtsHj7z40/eaJdSsHydwcUeau8NuE50iEiArBb4mdl5i4jxCBaqkujNmjIL2Z1zJ6ncDiVs+Km7mCtc46IGAmScN1SHfbAAacIyM8RriBsDzyo3zmOg3uqkduVmPp14bV0WQWTbsW1e+tWer8nEooboA/Mg8+y0uAQkeLDsi7WDSqabJiUXWDA9cv6VUBhMGt5RyuMtQKQj2Jkt+W6kJoW74Bo6Dha21L012Rid6EzI3Sd8AjSkRJnFrQuKswlq27yt3BaxsuRkm05rFsdupg1JYF2jlD82TskLVIrAcK9s5ukPlCtbo1qikexWa2WE1r24/fV9pe1h5oCjzdYc4cp5dmYzR27dN0zlxvttQf0dPxFTuXcUGfd4cfpGT19waq9/Pb4UlknZ0oxilqBZaUE82crMN8F+uY72rwpDe9VA0v0T0efUlYXZr2CqDWnlS1yO5FZtOCXecdepnIxFtymQEN9mNTgJrrpKyrjVTRVQ1YBtmdrl70pxe6gXvgn9XTf/BHpe+FlDqP/LTU7PmAXvbZq8L4ROtYFj5r8taqAa2+Q3+F9p3EV3JbBe6mDWRSTkciuAFCpoO9tkkQFneBP1o07d1Xqt/5WyhkesHSaDIpljNSzPVh9VOvD75Lv+9Xqg5fp89f8MG/cEfMzE246WnhLMvMTSwzGwibREymayRW0jCStIJ91DrA3+AjgMNuMQMPvCL4WOf9BuocwTNT4i45bkQDvymhMm00Yg5HqvTybAgFF3Rw30Ud6910hLNXt6PgfMf4CH+6sFbuL9maQOCCAY4XkJg87a9xOGAcF0sfV8HTuwYk4HlSAZGb5656y3uRkdqQMtjhBuwVTo8bSCTsTnlSTofSaBKJC1wmm65GYpkFss4XSTkvR5HGBbkVasU0yNE2lyo4u09NDh3f0rF05syW9XtbqtWs1t3W4oiN5nPDS0Le7KDLNTpQKR97+6EH335iKKdzwtXtb9r8SR+8kY3G1x8Z2fC1lSrzeQgepufpk4iJRFRMeg5/cRTnHACyljFmGMGEQZxsGnm7bldrs80QnZj9Cftwxbc4+1sY5+65T+gLONdgnLtZhBUrIaVSjy5yAqSACi7gEENCBV6gPE6QRKCAoyIhxqSJRZXnDcQcXLkJu0giokkqi30L2j2FdtPMWkpAa0m05vyi1iIS1oUmUVNp540jZrxgPLJKYcyhohS3q3R3/5rq+fTQysmzU50rj7021fvglyrqKk/U3do9tKR7YzFw8Kst461P7eFO8h/ml1U/a+yb+cGGqZ9/fdCbLoYn1UBzILF8S9fUAVlOck/g4Q7PfQI/g/DNdcIBtTpRuGXqPexKdoXDXUm3u3Z3nQh1JdzuRFco3JVwuRJdxGBwD3L1Y+ExEsLpZoD88A23iaP8woATNgGPnZqnbJibH/skVr0rjI4OoyCn7ynnZnwOMnB5BHdR9CYBrL/eXFYNA+lekh3IDSTj4YyakW0kBCGcfQSDyp2FVuhYdFOUgsCcjS+CzlhtN54WRoYgx0mT5w737zk0Md4z88zY2DMzPeObD033Hz432bYq657YObnZnV3VllsWt9mTfS0tfUm7LV6yFXefmjh0PpU6O73+5I5iccfJ9dNnU6nzhyZO7S7+Ri0OZab3H9iTGSqq3NHm4ppEdHl7ONy+PJpYU2wmAsnP/Uf4sXAc4xTHf01DZBT2Lg6MOPdTgjBhaxLEcWOaNteqiiTxFQTHGJRWX3B/XnE3v9BDv4D14Bez3ozi+v8Tx4m+pkMWVBLG3GLG1mvGpn4nVXJHzVJ2Uan2V2nsNuVbVEaNq9QwujGWqF3N+Afx1rYp3cAJlqb3ei+wzgVGS3ypfeO+3vL+kUxmZH+5fGAk854STnu8qbAsh1NeTzqs0HdQpK+8j4nsKw8aImra40mFFCWU8njSqjL7a29PYg+tePpapvnmdUc35XKbjq4bPjaey40fG+5ckbbb0ys625enFCW1/NrouqNjudzYdYGOmkDHvMDvUkFBS+j/AxQEa1sAAHicY2BkYGBglIrbuGH9rnh+m68M0hwMIOAVXNDNAAf/9rEuYl3AwMjAxsAE4gMAMGsJsAB4nGNgZGBgY/jHwMDAepUBAhgZUIEYADRBAfcABA4AKAPnAHYEzgAUBAcAPwNZADcErwASBcEAAASvABIB4gBSA8kACwHPAAADygADAfcAWgH3AH0B9wB9BEsAPwP8AE8EDgA7A+kALQIjAHkEDgA9BdUAMwAAAKIA0gGCAgYCeAMIAxMDswPdBA0EDQRFBGcEgQSbBRUFOQVlBccF8QabB9EAAAABAAAAFgBaAAUAOwADAAIAUABdAG4AAADlCnUABQABeJyNkMFqwjAcxr9olY3BLoNdFxh4a9EedhoDrYiISg8i7NjZVgO1kVjZfIU9zJ5jT7PjzvtKM089NCXJ7//L1yQEwC2+IFC1B/aKBe5YVdyCA99yG494suww82q5gxtklrv070wK55rVCz4tC/TwbbmFK/xYbmOCX8sOeuLZcgf34s1yl/5jqeVGH85GbXeFVHmqzT4qlM5lqk957AXDsrlBZDJVaHeks7jsszCJo0yG44k/XS3msiZWo9aJOZZbD7x+zSqW0JDYcDzgDAOFLXYo6BRypPQGe0Q0ipzTl+5EiuEhwPDyuawipjMmC2ZcjDhmzP3PM4RIOEesJHnM9/IxxQoLzGma7dYsteZJBsfLrQe8bb/Zv3/fBmX3AAAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAB8YAA0AAAAAMSQAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABJgAAAyJJ3n6CY3Z0IAAAAoAAAAAuAAAAOCX+AcJmcGdtAAACsAAABRIAAAp127YujGdseWYAAAfEAAAUDAAAHa75YunZaGVhZAAAG9AAAAA0AAAANq9YQG1oaGVhAAAcBAAAABoAAAAkBgIEl2htdHgAABwgAAAAwAAAAMi9OBC/bG9jYQAAHOAAAABmAAAAZryVtc1tYXhwAAAdSAAAACAAAAAgAe4LaW5hbWUAAB1oAAABFgAAAhOXL44TcG9zdAAAHoAAAAATAAAAIP+cAMJwcmVwAAAelAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nOWPO0vDABSFvzRpCn2nL0pJW/uyTdqkVopOTqLgIiLiKIgIDg7i4K9y0VWcHXRydPVHOMn1Ns1mdwcv3MN9nMs9BzBZpouhSMLVTivDxYoGIWtY5BUHeIzZZJsddtnngEOOOOaEU84454IrbriTbxG9W/BHyg+YR/y9FfxLrrld8OVTvohDXuRN8UOe5UHe5VXuFR/lKV6bS534Uc6jeovfsc4k3vpMmVHT3iZJnRQNqqpuSJqcauzQpak6SxTJqtOQCo56/e/+MWy9NhKmlbRT6Uw2ly8UnVK5Uq3VG26z1e50e/2BOfL8sRuE/nQ2Zlab2El90KgOos9WhAWGaegtyoyK79MmEYvcgDItcqNOV7tmUCqqgLDieCsM/U38ALcCZ9QAAHicY2BAA1sZOkGYVYmBgbWd+RIDw79t7PP+3mI1/P8JyH/4/9O/hSA+ABumEdgAAHicrVVpd9NGFJW8JI6TtLRZKKjLmIkDtUYmbMGASVMptgvp4kBoJegiZ+vKd36Dfs1TaM/pR35a7x07ZjNtT09zcvzuPF3Ne+/OmydxjKj0KBDXqAMlz/pSWn0opc6juKZrXhYr6ffjmmwmnpIWUStJlMx2BgdygcvZjpI1gjUynvVjdaSybKCk2o9TeBSfVYnWidZTL02SxBPHTxItTj8+TJJACkZhn1J9gBTKUT+Wsg5lSoderZaImwZSNBr5qIO8vBcqPjmedQuNGmCkMpVhu3ytXM924rTvDe4lsU7wbPN+jAcesx+FCqRkZDryj52CE6VhIGUsdaiVODocSGHvSNx9BJRSI5Apo5hVobP/Z8nZU9xBNtOElHTLZjU9ZDi+ziuleqo6mR5QRVu041EYUR7Cn8SXYl0PtoYvV0xeLnfEHWwFMmPgUkpmorskAugwkSpX97CqYhVI1Sg5ZTNUSGgfsWQ2SlWW4jxQQyCzZns3zqfdrWRF5g/1k0DmzPZOvH1/6PRq8C9Y/7zJnbnoQZzPzUXIIJSqn4gTSaEe5jP8qeJH3GUIU6z349yFWjieMIPWCDvTqGm8doK94XO+UqhbT4JKesi/B+/Lyr1Bz9xxFjR0icTZOHZd1x7OW8iy3NmNHZnToUoR8Y/5edeZdcIwS/P5si+Pfe8clHkbxLf8QE6Z3KV9x+QF2ndNXqRdMHmJdhGS0y6ZfIp22eTTtKdNXqF9z+QztGeMVPx/GfssYp/BOx5i076P2LQfIDbth4hN+xFi0yrEpq0hNu05xKbViE27YlTb9kfdIOx8qiJInUZWWTTmSqMWyKqRui919Oh5dGBPvUFUPWhplT2I/5aBrgjkwlhpd1nON8RdWrPFffyiEC8/ahh1zebpG0eKEzbHtZgYlH5n+XeHf1sbupU33CVUYlA3Ep2cJ3pz0AokMM3T7UCa/0RFH+2DfhFH4SzXVVP1eL8h4Z0s6+keLmm853GyYI40XXdpEfHXDLJCj+PfUmSq4x9mTa1UO8Nel54/Vs3hHlLikOr4SlJe2c2d+GlBFZX3tLBaPJuEnCoVTCdt2bqLCxS9ehtSDo/hvCxE6YGWYjQ4wONCNPCAUw6MV98ZICUMad3F2WlE6KIuGBsF+00Iou2IwpOU2pfRSOXXdsWOrKhuk8AvJpina8nzWDjyy9RAwVNeHWmg25DminVLBfdEqa7uMRhP66qVjAWMFHV246Zq47PCjEdOxVzGktexujNs9c6+Hp7SpLYdHYtm714bhY9OziXlB+3V+k7Ocd1o1aRkXQzWdtLMV91F3LrrY3f/RXfrZfZEzg0ja/7ETW8aueRnCMxOQbavc3AmTVkF9da4vU6kZWdp9HkTN2S4XdvwKxP+hz7s/V+tx/Q5VNoac+OFw64loxxvU4yT+jdYf02PBBjVMS75E5S8NLyZxw4v4UJTDC7i5hv8n2JGuYsLEgCHRi7CRFStA11VF5+iE522DHtRIsCOOXacNkAXwCXomWPXej4DsJ475NwGuEsOwTY5BJ+TQ/AFOTcAviSH4CtyCPrkEOyQcwvgHjkE98kh2CWH4AE5GwBfk0PwDTkEMTkECTk3AR6SQ/CIHIJvySH4zsjlsczfcyHrQD9YdB0otf2ERQuLgZErY/YeF5a9bxHZBxaRemjk6ph6xIWl/mgRqT9ZROrPRq6Nqb9wYam/WkTqbxaR+tj4UjmU4kr/Cb8fwV/jAfgzAAB4nJVZeXAb53X/jt0FIJIAFjdAguRiiYs4eAIQTyzBWxQpQSQlQZQo8RBF3bJsxZJsWbJkKZITS1Yky4nj1IoTO06sxLQby6090zp1O23iNIfqacZR6sZO/mjTdlonnUnHJsC+b0GIlKVcnCHA3e/bb9/xe+/93iPiUAgh+i6/A3lRE2pDHejsqwgThFMDc5VrNyqNiBJMKJ5FmCOYm0EIEYrIGOIQr+X4MaTTCWkkCPpOpNVq0kijKdF0lSr1n3xMQDok6DJ3PL70UEYp6VBE0RLwydVlVSscIXM7bagvJ1aLnjNg2e9r52KNPtmjJ7LHb25sJ4uLcBklWBKlBPx+6FiZWh1um+7zu0ONNRIn3l/CuUKxSEV33B/3u4qcxVuNbr/d5i8TxTK/ze53G3PfpN+aX1dPu+ff4AatXrfR056Jx1Y3VXurbNP3SHVBXyThr20SraI167QF3KLoDsCD6gHc1EdfiHFZphW6BHb8gPcgPXKiasWPKA9mpExVDg8jjIs7YVsJ6kLIaRcNsK1EEgUxhEVZlAqa+Bvq2wloGcK4/zo+cvjl+5ra7n/p3rfe6tnT7z3/ubfwr3I23tO868ktmz+/v+3xQN9060OfQRisi7hH4N0m5FLsWtV9GCMErySkhHSJ4UpqCpkb6m12XI7t7TiB23ELxrJwyVGuwd3Fdp3WWoy7hEr7pZz5q7zHYZrfUdEfCPRX0M+Lro/eY/qN4+fpl+h+RJEGSUo53AFHUvAovGkQVMNpEAR3i6Jo5Mwhs2QFd1ilcZqc/w77JdWP4O+ehi0vg51e4X3IwE7RcSArTqnmISAxXYcoLaFdouhkp4BLGxMawVeDcYPYYJUWsEj/1RHRxfDxsx9lB0/Q+/3Vf2spKenHwx9vOoFUP8QWfg14rkNm5EflSilYQDW/pRNORsOwxYq6AoFAFRyPF9ETW0STpjFKGMCslnLCPEHf7XvoxcnJbxzr6zv2jcnJFx/q+1Zteldz8850bW16Z3PzrnQtuXgt+1w6/Vz22rXs8+n089lrV95+MB5/8O0r8B2LPfg2QgsLSAbN/pOXkQdpZRZdul8h5FNkC0YcTvEYUcx8xqBScJnFIgEwhMoQsyxa+tG8wmO+e1tXHWjaBF4ncKoRVILTzH/gNKNgDeEGq0XIY86jWpU2JrBEu/7KbPrCpezbFhcnkn1fuiTkYvjv8M2tBmvuBbzRKo7QdO5HtU3Z46o0j4I2BwFtOhRQvHANcU5YZHNpHqvvVF0IN3RIB3AQBbB0Hg3wXnow+0P8Lzn5Nd5zOdd0OfuPcBCccRkevwJ/2pBDsXIgP4AXjlXRa5fsRt4SMjP4RnFMbBBlj88PSLbCeQ2/sTsM5HuEXt1sdeuzcUKubuU9RZb5oKPGQr/40Xt6E33HXm2e3wanE/RY7jr9Ff0FsiMf2qsUl5UKlOdsmPAEEl45JDy3BnRAwyx8DJ2I58kwmNDaKWBKRQqZTUJsgW1SYWW/c09GMTsdCFWWO3xOH7zIHvBKWgg/EeKvAgJvKW/5/CL2CBqxHO7FYwC+x3aaHURsvzo7cnZbY/PepyczD9Vhuu5YY3R/15mLUnIsd50vE80HBzZ3PPT60T1vnBtqjefWcVdX9+QCyYa/+fbWsxsC+SgYgCh4mb4PWT2K+pRuO0vGKUAGwZTMQr7AVMBjWszzaFgDqtoZULhhgIyV6/L7MKoO+qL+qLvUYjKU6DTIi706QwirkguyVE5ZeKj66GkhguygigRKEPvGK/vaTY7sQRJNH+hWxjujYpFRqJcyM3tjM9eO9STvf3HfAxdMxOpRttD3mw88uzNYuvncpoi7yq3TKv4mr6nr9FvHZ14+terE48dapnoDgI9ToNSz4DcH+uzAXAT8VFQMILELhCMkVcquaOEqk3ekmcGn4EgGzBKuqzT/rF31IVtf9GFhmaU1ylHCzao7AMi3b8hklGJYcSCHVOWVANcNS0612TUCuJTlD414anuZnRRHHtlSEbfpqVPfUBHpTlSb6A2b6/GJAyWGk86i0tjquuwVhv3OhV9zZZCxwqhL6TBjEADziIC3OMRRNCtgxEO5nAHnqECzMMipcllxF0Z+r7vUYRMNGh6FcVjDvARewUt5DQTLXy5PbYk4fV1f3Nf7o4snfnhpzcjn3zlx/Dt9rYJJLwZTk/3rL+xoap19LF2/prPFbcSm4qHx2cmXf/vEE799ZXLT4IiuuCpU1XP6r48cffORHr07UqG/hbn/AsyxzBtWgmq+5VRw8QVTg8RWyHoVbovf6i/SITM2CwVcLeVis1oFlwQm7t3XDnd0HL62e/c3j3R0HPnm7t5dvbIMH3272fdu+n7vqdfvve/1U73wfd+98D3/VN342Q0bzo7X1+e/65Cau44tfEhfoDfAhauvGzRq8RmY8zC48EBUsIEVaTK8mHlKFXvhLlyzJToMWllZjC/iwCuZZZbfRIsNYjiRz001BfuLODK1feDhxNwuk4MYk1+cWXtkXTW9kb2470hvO/nxfFQ0z/aMxibODZP9efk+C+94DWzI5AM8s6hdlE815yKaAeaL8n0Sp4srt+STrZ/EKZga0iZjUpB5PssSjiH5tCrYHMh6Mk5v3BIqe5Hs33u0N5mtVf07ArbbADEYhMpzTimqxByt4YigIYsiBgCuED6QXwjSCEQzBnLxwwBWe6cOCwJIryUqBSpVwr97qxZULFEfKCAmo7hC1RjV1VY3hZqqPAzuZtMKLQri4ApDSC1kS1kocYskwu2Cvl6G+JieMjBRnauMt/n6125ONE0NhJLnf/n8xJb20faI3eTSVqbfOLjuxPpIriu8KtXiPvTVHVFndbPROSYnfOaKjolU8+6RGDdw8N5KX6VJv3JoMDZ5djh7YY9Jqiv/Hu+u7Qj4ErIIfvQsfEge5Q1Q8fuVHh3GtALzQiVEMk0hAfNY4EF1UtzJYVhLg/ZqsUEjLBkDQcEor6VoNJQIHPJgj9YQ4j2+GINXG06YGX9TKyrDXSEVY/zle44eMFifChKrcRMuyf0mEXZ5XWatrohvjBw1nDxCRizmHguOGEy5l09k/6K1VW/Sa3Uj1VHm383g37+HTsCN6tDAqxRzt7oAB6vuFHFjILP+FtzANaWwRBDZdWt9aSlzPeCtDnihcINgmuVljzkqvkhBF9NRIdrxqwZ3SWi2dfWjO9s6Dn1lauqZA20Da3GqpK7y6ew/eVLb2tume/2+7omWtqluL520+s3uyvjOp6a2Pne0u/OBl/aMff9T+J9Njvmu1N6hcGRod7Jrz0CgZs0sY2FnFv4HH0P/BmxMi85AsEHFQK6PtyGTYmAktsANvaQsz7r2cI/jKf4s5DO2A+4wzfSwo4qId3BHPGWRI05nWAKuFXY6I7KFL3JG2FXE6Yp4LBZPhMmwmcU35HpggpsZE3RaEapTohFAARQ0zLL+YtaENA88Lp0ncAR7ZatF1OM6Use7Qvlc0QtnPQtn1bITwnBC0e85AaMqj8VsLEG1uJZfSrkaFiNSvc2NpbxTaMEVUDQggCgRhs/PtoT6t8VyL/kGZfzl0sr55/QifrJxuLlSbl1XW7O2PbxC65c3FPfvu8DXsXTbf+zg3kTuy0XFFa7tTaLfiL8am5yaaWpa31Tmbuit9lh5/dhnxmuZPbZAzXgCmBnYYwuzRykYWlHaWIhEwoTyDkw4CBkgaTyFqswCCEPbiJDadQLXXCyKVtJlDsi+gCxrpBBsG4Jzz8C5UXYaUGYcDsFp9j/1NI/GBp4GxkNvB7A/EWeXS9DV+M0SHY/Ecvc21Weqp5+ajfVCy9A0u3mwvMFUaooo61tTu1YF5O7Z7om9s7NkmntXjuauFa1o23VxdOfXDyt2X31Zr6NMLguvvaenbbLHV1VJdjA/8yi18N/8p/hDal1tQWtQBr2QpzjQZMI6RWOwSdDwwpja7EC2wRCkGg03rMUqoQPaUwXbQ79vu1Zbkn8mzwFZC68DOOkgRd/tKXS3h4AelWQ2+AL5H9bD/6EO6w+t83oMvTDLFORS7bo9Lcm9ayKRNXuTyb1rI+ecoRZJag45HKFmSWoJOeme/Ja1kchatmVN9Jwz3My2OJ1sS3PYOd9viroH6E0x4hnknOnjmWg0czw9fJJ9nxxWNq50OlduVNo3xB2O+IbsnvQJtnAiPfxwpqYm8/BwMpNwOhOZZDK/4Z0KKx9yV7BYhO4fd/LnwVbQv5C8SRfbfbgHbYFR7bpw5xx//qODsBGe6QaMNkOtD6MmJQ7xy7uApUP8QmaCJm6WjVAomQFLL1bGZRQ94JMBnKyhu5PaNdQvZ+WM/1GsNegNlbXd9antnbK3a1tr86p6yWQpbqgc2jRRv/7K/mTz/q/smr7STD1FRQ63o2Hr2dGN58bryqvKxTwhf/iNw3v/8sxAZyvEbOXCh5wW8iLEbCWCz8p8LiXPga6XFH05xhoRNDGxznCRGtQstR4szLRa3TDS6fRADGFzegXWaFSOhUZY3lIZQsMf8wRjCswqI4v4U8wYxxvD1Rj6Fb/slWXRVATpAGwNMtMPoB5XoQcUvRuOMIKE4jIJvbe9L/8W7V3kCv7ufXdIw4pGFarKSyLqbPnG+/aSLX+yqNMP5nI1sZBTdprUuh0+3LH/8B6j9ckAtYib6JvzClWWV+7bizpDm5K7Sq/SD1ACDUCueFIxgnzaWpEQTbKa8JRp7AKNw2BE0F9DoGojHvrgMaRSXa0WQVJQe0JBUAHnZPmgBqyoRVg7e+djd30io5QNroaqml6dGcz09bS3ypLDbtQDTUjgRBGrQDa7ZLUYsC2fVP16DAgWllMEaPYXPyFTNEa5/JZ84mANM+Ow7Ab+QduuEEaB2YrY+MODStxdFt944NCBjfHWe76yY8dTM/WjA8Ha1tbuNbHxk3ifVxkZn4jUtZcnJztTMz1VuZ9PTE1NbJ1y1vXTD8pcHbJgUFb33bcuYjCHrLLHyOksdaNdyU9tTlT3jTf0TbvNqUT1eEXwTKbvvuHwx/8uh51FAqdx9TdIK4MOVyRJWvZsyOzcmQn1NroZ9i6oNf88kIuIUm2hKqkHZOjvwttVCmKVrbKYJ+3iHYz9wlzbE5PA1oNzk9sHTsT589m3UkNLZL0vma1j7/wafGyB+kcX2U1h+igagbtIstiAt1y/zkYv+ckl1wx/O4EZ1Ss1euhAQUBOgKDm6Fih2cwP6NSMJktlLtjtiEiixnTbBFNTju0AaT+O4sIwU5LZLHP28Ev3xIODB3rFcj2eeLbGlfuuQZaPvti3d5U394tXiCf7Hu9p2Prpke7D27pNRaXm7P958Ts282lv19am/0DqFG0S7Pj9PFeYZFzBtxKpEz5GcljHVtARYtKETXKAW+Rx1fDcZXhOvOtu+BSRKPs54HRWi6DBasmJJyQWk/SyXpP9TXFYPkpsjvLsLtHBe1ZVBvUfv+6QuUSNx2E8mOdiF+Edn4N3FKGoElo2E+PTQGV4dSbGpZE6RIC7RaiIDcZEjeXWZEzSSCK9mH0N/yQXJKtwFrH5WPpCrotJjqGVQ9yf8Z9GMTwyMFcM0WusEo2UFRot9F8yxgoUeT27D39zbI1X12gK7lvuuv/OrZlMJn+4lG/YObWO6SC7obRACWs1i1YQKPrarsW3BQEdasDrO5dowe96wPLHnuz7004GHgQGB0SMLT1z152gH5QIsH8MxRobRNFa5bV6vbZiB4SaP4rbcMNtExM9UVkxu7PsBsQmS+IvTFhdj0dG7l9V0VzKk1BVsLPWha+wG20JnoThusaFaXYud4AmS4jN0jc0cipTs0K30c7bGkfb+2dHTm6qsWxQr5KTJ+bfpMr8m3ksgYT0UXojP81fgdmMgjnOsAjYsGSkJohhdeZkzs/z1dJByp/JXb5oKeN/XGLSasz6d4RS8TP0hk2fPS+nPFKnTA4arHD+ldwvSTH/LnQ/wp+LGhwAlmay2wQDjlK1g7aXY+jJcc3OaaPRMNS3Pel2J7f3DRmMxumdZOsPcw/MuSVd7f6bN98/dOjnP/vp/poVknsu94AqexS9QL/PzQDCw0pQYHMsfpArjKQzLBZYQ8KT7k9EweJ0WIpJIvQqZ3OHH88dxWe4mdz06dwU/tJp/LRqm4X/Xfg6rYRcqs33ZBjtZsDAXR4P5DV7PnRb8DP6uHsVOePsXGXxSPxzSt6ukOf494FvhdD616r1AmVpLl/8bYI69CVYhYtWA0WSjbBLFZc6XxHUaS/zgX1pMV/eQygE2drs80tQ3gtTFso8o34WErd+eQq/NGuxE0NZW8/ayPbjpdbukW31V1+am50ID7XIcxPjyoEom8FMS4mgbd+W+Op6+5uvsOR+8JC7ZX0T++vQwc6WbEDVqWfhQ/Iz0KkVtSnNrUAV3dDiLOeQHGTz5RxyqcNpXun3eipLnbLE/g0lLKORQmE8nciXn8U2RyhEB/lascMg13VG/e1hRyA1unE0FYhmTo1OPJMIam2iqaqhLx7tDNuCqdHMaCoYHnlw7djlRlprszltNl+D21df5S4PNA+3dN07UpuKpUr0pVKpK9RcGYh5yyr8bRuTTTuGoq1x0G8m90v8E/6nqBSwatYxrDYSCNV2nMTlVK04/iiJJ+Im3L5zWkuFYu0SYLXFAtUyyP4An54z2EzFfO2Bn/7s54cOvX/z5v5arkS0Gebw6Tw2VpNn6By/A0pBzasayCaFyUcxZqllN5t7sHnbCnXawaZwE5lviyH2bzXG4PzUB9xEQ1X8NdC5E6JDc9Ol15qKb2gcljP4/nvIMyY9frE2ao84c6N6M/kHeOcA/j8SJI9BjbYrljv+j8YKNfsv2gB+L+chjz0BS/8PN7oHiXicY2BkYGBglIrbuGH9rnh+m68M0hwMIOAVfGcWAxT8//JvAetD1ltAJhsDE0gEAGPYDHh4nGNgZGBgY/jHACRTGCCAkQEVGAEAKW4BowAAeJxj4WPQZlFimMzSxcDGeJ6BgfkPQxwLH8NGIDYFYmXWLAYGFg0GS+a1DF2sWgxTWEwYepl/M3gznWJoZnFhcGaxYPAGitUCcQ/zVYYQpnUMSkB9MUysDG2M5xhyQGzmNwzuQDqW+TqDH+sOBifGawyTmZMYXFlKGRRAmPkIgwNQfz8TC8NylgigW/gYkpg3MWgxv2CYyLKaQYJ5LoMwUy7DNKDb9JjF/39hSwHqV2RwA4qlAcV8mIoZvAEKxymdAAAApADiARQBFAE4AWgBsgHSAd0CGQJDAncC6wNTA8EEJQR3BMcFFQWrBgUGdQaNBrcG3Qc/B2sH0QijCL0JGQlzCekKsQrrCwELVQtxC6ML0wzJDPkNJw1XDXUN3w5PDoMOvQ7XAAAAAQAAADIAWgAFADoAAwACAFAAXQBuAAAA8Ap1AAUAAXicfZDdasIwGIbfaitsgx1uJzJzAy3qTsfAH8SJShHxcBBsq4E2kVgZ3tTOdiE73s3sLQbBk6YkPHm+Nx9pADziGx4uo8N5YY++47iBAKHjJl7Qd+wzEzsO8IBPxy16xaTn33H3ji/HHtr4cdzAPX4dN/GGP8c+2t6z4wBP3qvjFv3H0oitOZyt2u1LoXRmbCFLZbTIzEkn0XBQjXAkba5KszKF1LM4TWQu4vGkP10v5uI2crvbpPZYNetF3dsCljAQ2HI94AzLn9thj5JOQSOjtyggaRRZ01fuREoQYYjB9QsxYs4iZ7JkZsVZndSY8SlT5iVrgjzGhA89xRoLzGnqutTVNuxqcbzerMcbdetO/AOHC1gvAAB4nGNgZgCD/zMZDjFgAQA2DgJeAEu4AMhSWLEBAY5ZuQgACABjILABI0SwAyNwsBdFICCwKGBmIIpVWLACJWGwAUVjI2KwAiNEsgsBBiqyDAYGKrIUBgYqWbIEKAlFUkSyDAgHKrEGAUSxJAGIUViwQIhYsQYDRLEmAYhRWLgEAIhYsQYBRFlZWVm4Af+FsASNsQUARAAAAA==) format("woff"); } PV = 104 FV = 100 Nper 10 Coupon rate 6.25% CalculaTng the rate IRR = 5.72% EfecTve rate = (1+rate/Tmes)^Tmes - 1 (1+5.72%/4)^4 - 1 Efectve yield = 5.85% var isIE = false; var f1 = [['t1_1',85],['t3_1',82],['t7_1',236],['t9_1',372],['ta_1',97],['tc_1',283],['td_1',466],['te_1',344],['tf_1',305]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed