Choose a brand and answer part A and part B with a total word count of 1500 or more A Part A should consist of 700 1000 words and it should answer
Choose a brand and answer part A and part B with a total word count of or more A Part A should consist of
Choose a brand and answer part A and part B with a total word count of or more
A and part B with a total word count of or more A Part A should consist of words and it should answer
Choose a brand and answer part A and part B with a total word count
of or more A Part A should consist of words and it should answer
Choose a brand and answer part A and part B with a
Choose a brand and answer part
Choose a brand and answer part A and part B with a total word count of 1500 or more. A) Part A should consist of 700-1000 words and it should answer...

Category:
Words:
Amount: $25.31
Writer: 0

Paper instructions

Choose a brand and answer part A and B with a total word count of 1500 or more. (Attached) ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:75px;} #t2_1{left:94px;top:99px;} #t3_1{left:113px;top:99px;} #t4_1{left:113px;top:114px;} #t5_1{left:113px;top:142px;} #t6_1{left:113px;top:157px;} #t7_1{left:113px;top:172px;} #t8_1{left:113px;top:195px;} #t9_1{left:113px;top:210px;} #ta_1{left:113px;top:234px;} #tb_1{left:113px;top:249px;} #tc_1{left:522px;top:249px;} #td_1{left:113px;top:264px;} #te_1{left:113px;top:279px;} #tf_1{left:113px;top:302px;} #tg_1{left:113px;top:326px;} #th_1{left:94px;top:372px;} #ti_1{left:113px;top:372px;} #tj_1{left:113px;top:387px;} #tk_1{left:113px;top:416px;} #tl_1{left:211px;top:416px;} #tm_1{left:113px;top:431px;} #tn_1{left:113px;top:446px;} #to_1{left:113px;top:461px;} #tp_1{left:94px;top:489px;} #tq_1{left:113px;top:489px;} .s1_1{ FONT-SIZE: 46px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } .s2_1{ FONT-SIZE: 46px; FONT-FAMILY: CAAAAA-Carlito-Bold1; color: rgb(0,0,0); } @font-face { font-family: CAAAAA-Carlito-Bold1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAABxIAA0AAAAALegAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABBgAAAr4mQxNgY3Z0IAAAAmAAAAAvAAAAOCbnAmBmcGdtAAACkAAABRIAAAp127YujGdseWYAAAekAAARhgAAGs5sFafBaGVhZAAAGSwAAAAzAAAANq9y1HloaGVhAAAZYAAAABsAAAAkBgIEIWhtdHgAABl8AAAAnAAAAKiYqgwqbG9jYQAAGhgAAABWAAAAVpNvjW5tYXhwAAAacAAAACAAAAAgAdoLa25hbWUAABqQAAABHQAAAkyex49bcG9zdAAAG7AAAAATAAAAIP+cAMJwcmVwAAAbxAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nN2Sy0rDQBSGv7RpmktzWaS0adLWkBJaQdGFiO7ElTsXvoBLQUQE8XUEH8GN7yC4d1PcCbrwCWQ8k8zCRxAPnNvwzfxzA7q0XmBJxHqSTlcf2LxIXrAhlS1xxRa77LHPIceccMoZF1xyzS136lspoVtqp6EOODLUuVBX3LSUelev6hPUl1prRfWmHtWz5PumezD62mZNLEzWFWyybboRGTWl0BVL2eGUiJCcVDiPhBhfZvZwcQj+2WmwHP1Yna7dc/qu5weDMIqTdDgaZ5O8mM7mZbWo+yuzdkd8LBJZcwND6rIdt6plkw2nv8GcX2ZPozBPCy+BAbEv8q4TMOGP2A/nelSYAAB4nGNgQAWMbAyHQJjVgIGBdS7zQwaGf/vY5/29xWr//xOQ//H/x3/LQHwAAXsRYQB4nK1VaXfTRhSVvCSOk7S0WSioy5iJA7VGJmzBgElTKbYL6eJAaCXoImfrynd+g37NU2jP6Ud+Wu8dO2YzbU9Pc3L87jxdzXvvzpsncYyo9CgQ16gDJc/6Ulp9KKXOo7ima14WK+n345psJp6SFlErSZTMdgYHcoHL2Y6SNYI1Mp71Y3WksmygpNqPU3gUn1WJ1onWUy9NksQTx08SLU4/PkySQApGYZ9SfYAUylE/lrIOZUqHXq2WiJsGUjQa+aiDvLwXKj45nnULjRpgpDKVYbt8rVzPduK07w3uJbFO8GzzfowHHrMfhQqkZGQ68o+dghOlYSBlLHWolTg6HEhh70jcfQSUUiOQKaOYVaGz/2fJ2VPcQTbThJR0y2Y1PWQ4vs4rpXqqOpkeUEVbtONRGFEewp/El2JdD7aGL1dMXi53xB1sBTJj4FJKZqK7JALoMJEqV/ewqmIVSNUoOWUzVEhoH7FkNkpVluI8UEMgs2Z7N86n3a1kReYP9ZNA5sz2Trx9f+j0avAvWP+8yZ256EGcz81FyCCUqp+IE0mhHuYz/KniR9xlCFOs9+PchVo4njCD1gg706hpvHaCveFzvlKoW0+CSnrIvwfvy8q9Qc/ccRY0dInE2Th2XdcezlvIstzZjR2Z06FKEfGP+XnXmXXCMEvz+bIvj33vHJR5G8S3/EBOmdylfcfkBdp3TV6kXTB5iXYRktMumXyKdtnk07SnTV6hfc/kM7RnjFT8fxn7LGKfwTseYtO+j9i0HyA27YeITfsRYtMqxKatITbtOcSm1YhNu2JU2/ZH3SDsfKoiSJ1GVlk05kqjFsiqkbovdfToeXRgT71BVD1oaZU9iP+Wga4I5MJYaXdZzjfEXVqzxX38ohAvP2oYdc3m6RtHihM2x7WYGJR+Z/l3h39bG7qVN9wlVGJQNxKdnCd6c9AKJDDN0+1Amv9ERR/tg34RR+Es11VT9Xi/IeGdLOvpHi5pvOdxsmCONF13aRHx1wyyQo/j31JkquMfZk2tVDvDXpeeP1bN4R5S4pDq+EpSXtnNnfhpQRWV97SwWjybhJwqFUwnbdm6iwsUvXobUg6P4bwsROmBlmI0OMDjQjTwgFMOjFffGSAlDGndxdlpROiiLhgbBftNCKLtiMKTlNqX0Ujl13bFjqyobpPALyaYp2vJ81g48svUQMFTXh1poNuQ5op1SwX3RKmu7jEYT+uqlYwFjBR1duOmauOzwoxHTsVcxpLXsbozbPXOvh6e0qS2HR2LZu9eG4WPTs4l5Qft1fpOznHdaNWkZF0M1nbSzFfdRdy662N3/0V362X2RM4NI2v+xE1vGrnkZwjMTkG2r3NwJk1ZBfXWuL1OpGVnafR5EzdkuF3b8CsT/oc+7P1frcf0OVTaGnPjhcOuJaMcb1OMk/o3WH9NjwQY1TEu+ROUvDS8mccOL+FCUwwu4uYb/J9iRrmLCxIAh0YuwkRUrQNdVRefohOdtgx7USLAjjl2nDZAF8Al6Jlj13o+A7CeO+TcBrhLDsE2OQSfk0PwBTk3AL4kh+Arcgj65BDskHML4B45BPfJIdglh+ABORsAX5ND8A05BDE5BAk5NwEekkPwiByCb8kh+M7I5bHM33Mh60A/WHQdKLX9hEULi4GRK2P2HheWvW8R2QcWkXpo5OqYesSFpf5oEak/WUTqz0aujam/cGGpv1pE6m8WkfrY+FI5lOJK/wm/H8Ff4wH4MwAAeJyVWXtwU+eV/7773XslWbLkq9eVJVvSlay3Jdt6WH77IsvG5uEHsk1sEszLxiFgcAhvskCAEpI2dDolSdvApBk2sN2GMAm020zDTtrZdDbNY//ozKaZTia0abe7051dstuZJbHFnu9KMjaETZcZW9a957v3O79zzu/8zgdiURAhcpvbi7wojVpRJ3ryGsIMwpmVV+yDD8hJRBjMEDyNMMtgdgohxBDErEMs4tQstw5pNPwQ4nl9F1KrVUNIpSpXZR1y/O5lPNIgXjN2z/I7i8bk8s4OQTAH/d5wlafMFjF14ETcyVjMetaAvQF/B5tK+r0ePeP1BEzJDqZ4E77GGCwJUhp+ft/0zMaemVVBe6g+4uGsl428JdAQqQ6FPVHJbqip6LX44s6quM8Cn1VO+Mz/HfnnudAysmruKjsSbfNlJ1pSq5pDXo9l3Y6aZNgbqJNcfp1B55xfUVpW3UA/G9gNnz/Vzf6JegTeIPZDrh6VIyuqkSUTZgnOwFWMWDyOCNF1MRjB3awgeE1uzhyRvB5/gEhEjyMYS1giMRzQYxX74TvecNlwXsypo9J7+FOsy7+FHz2ls5fr7FqpEnP5OauPq5/7Bb7gyjU0DLvgDRvz7zCY+0/kQPzrJg0ORnCSCcRwB+7ETkLxUQViTGO60Yh9E6NaViNoZ5dPyk6nPLl8VitoWO3oBPPQP+AjFy0um6DKznz8u387ePBfP/14JqsSbC7LRXwEKT7uBh/LwUc9ElFYDiDCQZoQGkoW5xDGui6kuIiQaBEMYFYuCbwQwQKEpRSpQCLeCEEEnw/mb+G/PfbGwZb2Q288fuHC/l2P7r2A38snuHp59oWHNr302LJ3j8xsPQDv7bt9k5wm/41CKIW+LuvdmHBRzKtYjHgCSeqBJA0iljCEZabBXMUzqnUAOZdDHCd2aTDPoxxWM8reHHLt/U3VNETKAsUfG4aUtEfCGNXFwqlIqsZT7bBZTcYyNQrhUJkhInn8dVhPaPqlIB3TC9kJl4upK/jijemUHsJgJZYav9bq71k5kpS3rQ43nbpxaXBlU19TvdPu08ZG/+nA2qc2xPP12c0Nm4/3S10Wd0aKewRvdjKTnhlrZVMbxu0uu8M0ONjfvPWZkfkz5xsSL7KVgaSzLU7jg9EMBOkNwMmGhmStlmcYJELtMcU6NhEMV3IYfDR0cZhly1lAQ0T0K72luCyW7ozJOrhjQzapxifxpkhCSMStLsUrUaXH4CL1VCXMnA24uPLo/oFlYRNjFgxNNm864tGTG1XeyZFNrutGg8YcaKqZfx72Z7p9k7nE6ZCEfiaXaTAmLow4uj0DbK8aMYyui8VweQgiYujiMcehYRVs1wJhW3lF+L+NbIpRFRjVILiKeW76bmO02BbMGMJsK9nex2xsbEw2Y1RlFy1GocKg1/EsgmJVGyKcx58SAIZ2nDY1tmIhYfEKZmsiTlkJgNJjfOnYU+PmqudSmroTf/6z32uqBCy0evXq5EnD2ScYp8M+WY35UP79q/P/Vdug0Wm0ukORWhrHBOA0T26idvSwXNaOMefEDFvCqQYsCEZkGhEWE+BVuF/IXihDJgc+WxjFu68yszHZsR/XAb15PbwlgmlMYwz92+zkS6QaSBfSmLqVSsbYVJF0ReanZaJgDNS1Bdoy/s6B4YFOf3zjmfX160dXOlq1Tps1EJPraxIuQ2bL7i2Z2LpT4w0PDnXZSaVQbhJN6Zgr5LI7Q22jbb0HH4gbpVr7BsFsq7YZXUFLbUONP7N9rGPnMNyIOQCPx6E/3eDOQR7Uy1ECbpmhsTAZyE/oOYSUEhdSnSlngH3A0OKFcBTSVihVoleg5cmrhMfzzScfHDo8HMn397dMRrlz858k5aYtT6+Zf5LZP7I+Hp1PKnzXcfsma4A4mJAL9RfQF+F9KAfMg2ilFIvGgpVC+pI7CoMYLZBBjkqzy+LSapAJm3hDBC/qXBRUk8KKCvpWJrjj6tGenqNXd8xcO9bTc+zazO6Zmd17du4kN5effHPPvusne3tPXt+3582Ty+d+9v1z575Pf2jePAI8+QG5AXk7KJdBAmMD8DNTZEgT4IOxgVI0k6P1Xk7TRCxdhe/0FsmBGzZyp/x9kskLOGIltxvTAKfCboVsSQn44f7+5qlo/gWbxBlbz2yiqJIb86dH1ydqmXfnXKLY27qiactTOWZfgaMglvgQxJIgm2yBV2P9QtOAa0QgFfAur4AP5blzn28GQ4hDJ/UL/oSug3bLBjPmGGc1w3IANltqANWwbz0tXSW3xS4V0BiQHV9ifemu+7xC9dTqTqCslTaMPG5buDJstRgr1Dzwp6gu0TwuxQrqWwQcfFATaSGGKQ9CzTAkLkqctfX5qYETE6m2me9NDM5G8/l6b2s8avGPJRqGml32+m5RHOvKZZ948+DON58eaIgw3Oeb3zBUhRz4R/W+wOCh4ZE9fRLFKQ0+ZyH3wpQDwlC8tiKV38UBDCbM4uJmGDYHFW5hl3LAfcxsQPQ/BrnlX8oB1KEilbkW9TfqOHNLazWb3KF0OLk6XrntoYaWoCRWV6wIjk9srBs+O5tpmb04M32+k6j1gtVhrV2zt+97F6ukKnF9faff0H3i7w/ueON0f1839fEwhPwT8NFO85XHBFUqdb3yipvmq1JPxW5VLO1Su7q36Av5akd2ryWwuF2Ru0r/ME1UwSmvyMXvEAC5YRX7nA1e890ccPs2GoeNfhdyz4ME+NODjIhqY5N6HvllL8CoFIxe6TKGYiYDIZi0Gsxi1sg5IuDnnX+q1zjMdW/INpQqAap1oRIM96sEcmPOBYawZg27GX+LexEYySgbaD1RFPQoG6xhQGct4hPqNv6WvbZNcjdHKisjzW6prdbOYanwTZJa6GcLfaYZSuwYdwY5UVpOVmDYSQbD5pehIofpacdAQ0SJBO235RzdohM5BYvPZ1WZAWxQm+04UcoRRR/omWpMe+ILy6trnoyv/9qI1OLimVqHvy1k+cPHxK/nnFVbu0ee3JDQaI5UVxgjvan2q3MfIQX1NQABVdOA+hqKt7UBXihDL8DMEOUu3QLUGPi0JshWRRR2gdIhF2Gd8Uut4bcRGWsCLGBlMfMqrGjvDpyWaBsnF82avFdoTVzBfxRqxPmXLR6ufmusxTTHeurJ76WmSsn6ErBR+PZn5FOuE2IQUN5ShMncpSSs0n2ywWCwhgXWNDNKSeGFmKiSpfoqNFXyad+xV6emXjna23v0lampV4/13QrIudraoU6/v3OotjYnB5jvXL6NLg0NXcLo8uXbF9esuXj78jM/2RGJ7PjJM2cKn4rv7fhjppF5DXJHlCGmUDmr6fUhuIW7hQpIEJNkkdrxrbyKee1XBTY+DXi9xcWRgCTZqWVh6IOhhQp5OqyQNeBROYGJxVEBzsBwlUxDaGO4DmOoL4v0J5BMrwgep8ivwmfe/t185Crzx1j8rJ7nDeppPP7FE1fpO1QIcf9BfosiyC1X+6xqQAlnYDSk6QTShL4hKEXa6ExkotljcmIRYgKzXyumX60L3wDKAPEHeBXhI1j1TlWA+yutSaWt1D/L19h3Ofz8N6vMamP5Cc5nfyv/y/e85RfMZTrjRX3o5+SGw5zno2vD4bVRPGe228159sFcZLQOf262z7lqmWB7S1vb/K9ri93mH4GV/KgOHbpGaRcXaRcmHkyJdBpmWUx4vE5N1WdOpfT8Jcz7F1lS8pVtwQBGkXCgLljnrLKCgAaJ4Md+zSKJIDnJvVwsAptJkEyMY/35R2W+XBTmL/PBzHg6PdReL1YZ+0JbHplJbH3txMrMoSuPbZypwBfEhhXkZvvuS9shCprebVnJ4XJQWvZVZE/94vjk6yf7r81ujfS3eZHCQHX5vybXyGeoBfUDCz4nV2iwSp0wMYwqA22LkCJP15ZhFShpFYyBBHE8gYleoTK1GuU0BX95XvG3kiJTBxmhRlg9fe+yL10xJlcNDmA0OjwwPji+sm9ZZ42n0iYYWIJacIuWomQVJShmA7YW9BTkx2IFm0o2pmNYmc4KHxhkLAzaCwW4SHjh99oeiWJzZXW/sXny9IAtJvqSw9tntw8nO/b+cGb7i9OJVV3eiMEdc/fmWiafxh3OZM/ASEgKWeoHWztGUuK/r+7rW72qr498ZrdNWO18Rbxpxb7hKITaXW3XkjJb4/jyzOObWmt7JxJdD1WZexqtdXVhIXRq3Yp9uegXnzo8Jg3HcpYmX2XYKZikGLN2uLtnaKgnO1KYwA+DItVBN6oEXXC5IHwMBMga5BDHWjCEJeNYcoXAlbHSgEX18oLiEQtiiCdMYWIoyaj7GtkYRUbddZ+nFbygq+hMMSabHHZolW572BGGndqCXkFtXKzES8MF7ROYdmUnLg4YzOF8yzNj0BSSbTPfWR/r60jYtJzThp3y+oj/gXh8DWiohj4Q7B+09WWPXN114O1vrDZKddWyw0IizY35FXV+39CR8cHZXo+C16H8dVYHEzHF61nZwGMWKcDYFKiKuBSlotLfSo5YFMcEQnGx38/ItmCk4GK4B7fFNvfgUhkMSICLaYlSKaawYFoKyyEqWyzOzOqx5MCJDVRdbhjaFf3V8k0RRVm2gLLM5q9zXqu4VmoKWrPHrh/YeR30ZTj/KLsDcOmNUXE5MqyIS+ivRsijjaAjoL8aqapxU6WITMwH4EZeLnNjrDJipOhNQTld4XkdLWlNDmk0ephvwGAIKlhVODpAw2zhcKs4gdfdob/7rkNLl9HkiyNeo9bw6umF5V+9Um78CxdRuU+Zd7jIvDQeGKdT0QgGvvX7fF6vYNRKBR1B8UlzOuRD78plLniKsAgNp+JV4eHq+2LgW4LBYusv8dyHeBW/rbTivsZy6P52X+IfVYg+5Cv4Jmisip6Ulp5SFMa4RecYbDqf3+DzGhdOK04slzdnvQ+Yq5+lJxnkozk/8S8+sQj0bl2mnGZUYVUo/76SX8dvf4avkreRF5TFcUQzzFNGM8yDypiXUevKK35w2gLyQqkRZfd3JmkTFC6B3rBu0dWxayCpfKwzUtAtB+D5P8DupToYzBQdnL7rZPiAGGpyu5tCNlvhUzztagrabMEml7spKIrBpkK/gwGVbQbtaIJqCKF2uUWHCUvPcFWANQu7oR0cLHVdiuTjAfxynDWD1AoFvJLZbXaJFrohSV0BZFc68FSxyjaIUCrlOyeg+/DPj/5od8reOALSpmPfq7N/uNE53GAWE7m2T17ZuX9610+5+viDx4dioyvaLR3/MvLNh1uZZfmn3Y3L/aFMrPLayKapHGDdCnr05YJWbqVa2adHSJbbIzzD4TA0ABHD7jOIQGMh7DSAxxHMUWyVU3vd4mMjM0yCQY9XJdGpJQrPfR6eW0ufFubgaSF4mvX/+zSPCvLOzHsl0riE/NONdw6WlNksYJLII5lV+R/WDvRNndvW2PfE69s6dm7KSSsqfbZY60Bz69qW6r27og/Gzm5nnmJ/mViW/6Kic+bbI9tePdxtr21xT0nVNdXBnommbY8JQoh5GrDZCYH9LWh1wGYnxSagRigo++jBgXI6jxgWrStNk2blFITJ+n21QT/nikAaboX1H8F6F2qg68hXrvOBiqUTxeLTgmIiFKaN5JL5mtmit+siW5szR6c65L0XJidfmm0z+1NS/mMhE/4N43M1rYrVrUxVT29O9KeqGGT0CPaq+okzG8bO7+1e9thLGzt3bd1Yn18rusn51Jrmaql1sG77LPyGwMCcwgZg71GUlZeZQMYSGP8ZCB2LQD1N8xA6FnFTpYCZacsq1RFGAR896xYMKg5FcVRFhZbrrjMQ1eLjgkIo0x2YfNdieLj312dPffjc0Nrzvznxtfe7H9CIFkugebSrb/9oXXJsf3co0xyvLLPgTMXs5LbJa7e+ffbW1S0T/Ye0Rrff3b7nb7bv+MGedo1Y41BrC/X+Dfh1FnKRKPV+538alLEmhAUJn83/D1Zz9f8LCyxsugAAeJxjYGRgYGCUitu4Yf2ueH6brwzSHAwg4BVc0M0AB/+Wsr5n/cDAyMDGwATiAwA2TQo0AHicY2BkYGBj+MfAwMD6jQECGBlQgRYAN44CLAB4nGPhY9BgucnAwlTHkMjixFDM/JnBk+kGQx7TMQZhxvMMDMyGDMYs3gy1LL4MdkA6m/E7kO3NYM8cyWAOpGuA/CjWgwwMIHHGRwxBTB0MIix8DEHM+xgUgbQWUzGDLZDuZP3GwM7CDtR3mkEfpA+Iq1nWMwiBMJMpQzOTMkMlSw1DOVCtNfNLBl0gnQ90TzqLDdAMJYZeABz5IFoAAACiAOABFAFQAeQCNALIAsgDUAOMA+QENgRQBMoFPAWOBbAFuwXVBf8GSQZlBpcG4wb9By8HhwgLCNUJbQn5CokLKQtZC4ML3wwLDG0MjQzrDVENZwAAAAEAAAAqAFsABAA7AAMAAgBQAF0AbgAAAOUKdQAFAAF4nI2QwWrCMBzGv2iVjcEug10XGHhr0R52GgOtiIhKDyLs2NlWA7WRWNl8hT3MnmNPs+PO+0ozTz00Jcnv/8vXJATALb4gULUH9ooF7lhV3IID33Ibj3iy7DDzarmDG2SWu/TvTArnmtULPi0L9PBtuYUr/FhuY4Jfyw564tlyB/fizXKX/mOp5UYfzkZtd4VUearNPiqUzmWqT3nsBcOyuUFkMlVod6SzuOyzMImjTIbjiT9dLeayJlaj1ok5llsPvH7NKpbQkNhwPOAMA4UtdijoFHKk9AZ7RDSKnNOX7kSK4SHA8PK5rCKmMyYLZlyMOGbM/c8zhEg4R6wkecz38jHFCgvMaZrt1iy15kkGx8utB7xtv9m/f98GZfcAAAB4nGNgZgCD/zMZDjFgAQA2DgJeAEu4AMhSWLEBAY5ZuQgACABjILABI0SwAyNwsBdFICCwKGBmIIpVWLACJWGwAUVjI2KwAiNEsgsBBiqyDAYGKrIUBgYqWbIEKAlFUkSyDAgHKrEGAUSxJAGIUViwQIhYsQYDRLEmAYhRWLgEAIhYsQYBRFlZWVm4Af+FsASNsQUARAAAAA==) format("woff"); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACGEAA0AAAAANOwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABJwAAAuIz3f6WY3Z0IAAAAoAAAAAuAAAAOCX+AcJmcGdtAAACsAAABRIAAAp127YujGdseWYAAAfEAAAWWQAAIZpR1xoHaGVhZAAAHiAAAAAxAAAANrCVQG1oaGVhAAAeVAAAABsAAAAkBgIFVmhtdHgAAB5wAAAA0QAAANzNaxHFbG9jYQAAH0QAAABwAAAAcO649xFtYXhwAAAftAAAACAAAAAgAfILaW5hbWUAAB/UAAABFgAAAhOXL44TcG9zdAAAIOwAAAATAAAAIP+cAMJwcmVwAAAhAAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nN2RS0/CQBSFv/IujwILnimlQIDyTIvAyo0bE1eaaGLizqXxH/iv8PewMCb6KzT1tBhduWHpTc7cmXvuPXMmAyQ5wMbQirHXKdp9kOJF2aGiioXLhCUBG8654IobbnngiefwMwzV5+Ixxxd/Jv6Sa/H3PLKL+PCdOMI34TXe7Q+V79ts3dNXjjCVDsIpd3HHSJWxdB11tSjLjyEvgdx4dFkxIEuOOgXSNOmRoCqdGh3yUi+xwNRbLBryWJTuUC7XbP/9+zAy0Ycmkql0Jpsz84ViySpXqrV6o9lq2x2n6/b6g8xo7E2ms/lo6gfjjbOxW5pp8xvlijEJljCLT14XVgM4+eGzuXoh3ewl5KnWySdLCzNlNdzifOhzVKy3x839EV9IoEhrAHicY2BAA1sZOkGYVYmBgbWd+RIDw79t7PP+3mI1/P8JyH/4/9O/hSA+ABumEdgAAHicrVVpd9NGFJW8JI6TtLRZKKjLmIkDtUYmbMGASVMptgvp4kBoJegiZ+vKd36Dfs1TaM/pR35a7x07ZjNtT09zcvzuPF3Ne+/OmydxjKj0KBDXqAMlz/pSWn0opc6juKZrXhYr6ffjmmwmnpIWUStJlMx2BgdygcvZjpI1gjUynvVjdaSybKCk2o9TeBSfVYnWidZTL02SxBPHTxItTj8+TJJACkZhn1J9gBTKUT+Wsg5lSoderZaImwZSNBr5qIO8vBcqPjmedQuNGmCkMpVhu3ytXM924rTvDe4lsU7wbPN+jAcesx+FCqRkZDryj52CE6VhIGUsdaiVODocSGHvSNx9BJRSI5Apo5hVobP/Z8nZU9xBNtOElHTLZjU9ZDi+ziuleqo6mR5QRVu041EYUR7Cn8SXYl0PtoYvV0xeLnfEHWwFMmPgUkpmorskAugwkSpX97CqYhVI1Sg5ZTNUSGgfsWQ2SlWW4jxQQyCzZns3zqfdrWRF5g/1k0DmzPZOvH1/6PRq8C9Y/7zJnbnoQZzPzUXIIJSqn4gTSaEe5jP8qeJH3GUIU6z349yFWjieMIPWCDvTqGm8doK94XO+UqhbT4JKesi/B+/Lyr1Bz9xxFjR0icTZOHZd1x7OW8iy3NmNHZnToUoR8Y/5edeZdcIwS/P5si+Pfe8clHkbxLf8QE6Z3KV9x+QF2ndNXqRdMHmJdhGS0y6ZfIp22eTTtKdNXqF9z+QztGeMVPx/GfssYp/BOx5i076P2LQfIDbth4hN+xFi0yrEpq0hNu05xKbViE27YlTb9kfdIOx8qiJInUZWWTTmSqMWyKqRui919Oh5dGBPvUFUPWhplT2I/5aBrgjkwlhpd1nON8RdWrPFffyiEC8/ahh1zebpG0eKEzbHtZgYlH5n+XeHf1sbupU33CVUYlA3Ep2cJ3pz0AokMM3T7UCa/0RFH+2DfhFH4SzXVVP1eL8h4Z0s6+keLmm853GyYI40XXdpEfHXDLJCj+PfUmSq4x9mTa1UO8Nel54/Vs3hHlLikOr4SlJe2c2d+GlBFZX3tLBaPJuEnCoVTCdt2bqLCxS9ehtSDo/hvCxE6YGWYjQ4wONCNPCAUw6MV98ZICUMad3F2WlE6KIuGBsF+00Iou2IwpOU2pfRSOXXdsWOrKhuk8AvJpina8nzWDjyy9RAwVNeHWmg25DminVLBfdEqa7uMRhP66qVjAWMFHV246Zq47PCjEdOxVzGktexujNs9c6+Hp7SpLYdHYtm714bhY9OziXlB+3V+k7Ocd1o1aRkXQzWdtLMV91F3LrrY3f/RXfrZfZEzg0ja/7ETW8aueRnCMxOQbavc3AmTVkF9da4vU6kZWdp9HkTN2S4XdvwKxP+hz7s/V+tx/Q5VNoac+OFw64loxxvU4yT+jdYf02PBBjVMS75E5S8NLyZxw4v4UJTDC7i5hv8n2JGuYsLEgCHRi7CRFStA11VF5+iE522DHtRIsCOOXacNkAXwCXomWPXej4DsJ475NwGuEsOwTY5BJ+TQ/AFOTcAviSH4CtyCPrkEOyQcwvgHjkE98kh2CWH4AE5GwBfk0PwDTkEMTkECTk3AR6SQ/CIHIJvySH4zsjlsczfcyHrQD9YdB0otf2ERQuLgZErY/YeF5a9bxHZBxaRemjk6ph6xIWl/mgRqT9ZROrPRq6Nqb9wYam/WkTqbxaR+tj4UjmU4kr/Cb8fwV/jAfgzAAB4nK1ZeXAc1Zl/r193z4zm7Llvqac1hzSHjtForLs1Om3ZxrJky7KxbEuykW9hMNiAsbCxscFnDMYxlxNCIMEEARvY4N1ATDZ/LBuSUFSlCJAAobZ2U0XVQmrDLkjt/V7P6LANW0lVVPb0dPfr19/1+33HIBbFESLvcjehMKpDTagVHfkxwgzCuZ7JkmWr5BpEGMwQPIYwy2B2E0KIIYhZg1jEaVluDdLp+F7E86Y2pNVqepFGY9S0++Tqax/jkQ7xusHrHp97aFA2tsqCYI9FpHJ/aZE7bmsm6eog47CbWDOWopFmNlMTkUImRgpFbTXNTOEmnKYYLApiFv5/5l6QW5xoGu2OBuI1FSIr3G5kvfFMsrijNlob9eo9hnWWQNTljPoFwR91uqIBi/Ic+dHU8mrSMXWJXeIIByyh5sHazOK68nCpc/RmsaosksxGK+sEh+CY9jhjAUEIxOBBdQN25MtvZ9hp0Aqjtiufs36uCiVQu9xqw4QlmENMDhEWsQSN8RhxoPQmxLJMH2IYexviONyHMHbgdoyi4YDP7RTMGg4lcEJjjuPqYmzCVLeMqqvTpcmfUgs47EG41Mxka8mrJkN3169PT/zqzA39596Z2P+z7kbeahLKcsMLV568qa5x7Hhv9Q1tDQELthqWDo0Nv/DFQw998eLw6iX9OkNpvLTz0Gt773j93k5TIFlsUvU4CfHwCncCOVBSLrcTBryYgxvgYEJUeV1tHMswjJFph8sO5JAcksDb4mkhLTRj1SmCJFBP8Rrh5GTTQ8PL9i4vmxze2DNRy52YfiO3NLPhaN/0aWbn9ju6W6arICJQz5XPyafkI2RDUZSQy+BNqI/FCMGrMMPMWMlhx6g4YI86onodsmEbT600FwPUTjYwSqZmzkhMYOvFPa2tey5u3frc3tbWvc9t7drSJUnw0b2VHreSj7oOvnrLra8e7ILjrbfAcep81dCRgYEjQ9XV+SNISO3SeeUz5n2QsRE1yfWNGHMBzLDgX4QJRmQM/Aw+3wSScn3gWVfbjKMdTHv9gmg4VOLzSCIvxDE/z4t8XvhINJs3XTovPz/jc+Zpg9ssVbWlos0Jdyy3YtWKXCw1eHDFhieyZVqnYC1Nd9em2hLOstyKwRW5skT/XcvWPFhDKp1Oj9MZSQci1aWBYKy+r6H9lv7KXCZnNPlEnzdeXxLLhP3F0aZVLXU3LU011hZ88ALoF0Yp1C13uLDqeIIZTJgxwC8mPF6jxRyH+jSqa0A3tg+0dLDt0QhG5WWRVDQV8NmtZqNOg8I4rJvxDy+JQUJVA5UgqsmMt1wQIiJ4i3GtOruj2eqe3sWkesc75KG2lKC38NXi4KbtmU0X93W23P7sjjtPWhlHSF5LPqof/+7mMt+NR1cnA6UBnVaO1oWt7Yfe2L/phYOLJk7taxjpioE+/Vc+IwPkj6gMeO2orC/BLKlgGV7DALOFgNliAEuGsKAbgzQ8o1kDUVdwnQ7zPOrDWgYhIwI2S3zzUi2Ywqg+MBOlg7I3Xo5RVWV5XbyuNERhbbMWaVEZLisyx8VQpGKeBbKzlAaXZ9ATpsjOmAgNYKLz+jlnZOGyG7N1Iz3xlhOffH/D2uYVzUmX1ast6b20a/nEyqTSnliUawjs/t5NKU95vcWzRspGbMWtG3L1W/szbM+uW0oiJVbTgqVLMsNH+qZPbrOKVcF/5QKVrbFIVhJAqVPg+z8B5p1IQltknc9rIyzH0hxQCpYKqPDXYJYt4B80Z/p4oAYa3D5ZvPY+jwkx5lflATAo29wuBOB1SW4J3uKISYLWOp8yCjDQ8BKmvBGEq7Vgm1OTjedHVxxZn67fdn79+nuqi9gobuq9M53akbvv1ATQyU+6+nJ3vTB+++UHFi9sHQiTlYs7lVhL+vLrLz4DmD0I5PJdiAE3OtYzmQRV9AbIbS4egMvkfPSMzJwN9kwGYYENAp4B34NbzUA+LGtk2335Z0EBuEZmCMk1e1sOQlKDCGHH1BXzeDK/YHBQNsAdN3KLpWExT5UUCFR1oHXgAzUGNMLBjX4XY0jeu7a41mkiHlO6ONmRLbeSt53eUxvGjeYDHr0vs7hq+izlo2OUpwGvbrT4ZdCBojUf2DaVPgsaFJjaV5D+eg6flU1yXCvbVUx+bLPNzZhbHt0EbF4+ObKx50AteVuwjXWumKPzrpbpSprh0SKIp+9BPLlQBI3LBjvmGL+PhZhiZkOKENNshLjU4AGZ+RnEidfc51WYzYaYCjOnx41RSdAd8UScDqtFyyMXdmlnIHZV6oQ4C1fXZoUUXOVVWDWANtbmx8f67ltfU7ftkeHBu6smlSV9d2YqdrQdOiU2rxZsu3tubL370h3bLh1Z2pBlAl/u2r+kA78LsfUP644MlKk5wYEQ9yR5ByVRiRyIuLRgeJyDwoeamqUgIO3lYryxhLPHbVQOWxC7mnHW1owbcOG0Nn8GgkVJCkdNWEP4OHY8YPezzxeZOK1df5nzWhfbPdxP9Vat3v4S57Xdq/zymKfol1o9xxVpf633H4IIMU+fCrWWlLRKzK1mm808fSyUK2ltY8Yt9qmUyJxxJV2ulGt6h6j657jyMvkT4IL6Z7ts8Pt4wrFOzKj+oTAIFByiBtEskFVgC6QAefN1lDB/DUDe40YF/8CLXLGwCJC3XRVeBdQL8zGfYo7TUBOaL4z1H1lfU7/9UeocTJbvq0ntbD98WmxZo7zM+QXbLuqfV8E/R5c21irL2QsF6FP3xPI5OwQ5+37OjEJoodypw5gUY44vgUqM5BCPOcxzQOmMAXwF93oh5lRlUT9NcA4EZVmevQWL2cizKIRDEF5cKJIRQOqmgh8F0SEKdudcesP4OzffMW52nC9jHJbV2Kj8OZvwhr02rU7P1STvMB/Yy/TbbZ12nDRblRcmpv+xsdFkNWl1/eUp6hstQux5LgQ4cKJSWbRB3oI8zII2LF4NIhraGKyiRBAkG40skZqQiMSE4xinsVgII/b8cXdAOz798U5edB3Hn/5EuYwvv1pk18E/txU3Kv8ieLnQ1C8YwS2HIzL4iqBT8G4G3m1Hxaic1jlAkCx9uwaKAJasocbpA8saaPLHfTyYzQh1GcCgPBYqcRQ7gm4nPGwTtRYgErHgYk0Qq54GU6nlTUQK5+ucSByfwqdvfXprdaB+VePRB+rHn9ysfIlJx0hLYP8hZfqdttGcuO/we1yoYnD/ssrVi5ttvofv7L9/pJZZqdRLzQPpjbdNiPXLq2/ZCkJduYJ2gNM3cveAv63wNQT1JO1l7Mz/oogsgcikT+UV6m7wtGpFIBObXodZzFo5XxysPPeneZHDXMf69iq4egZ2aiNvg43csoOZ9zyidoOAt8QxkCVumyRvT6VgITyzjT2FR7gjIIVVNtN4pFAxofZYKQNl4LyqlWIBj9ilpMeTEO12MeHxJCU7p/ck6VnS402G7PZQEs3IAcw6K4fpm+TgTny5CxbCMx3AxvWQKRKoTq5NQIHqhdpufuVKS7z5letcYQfNWIxSZhxf33ykq+fXcpTeCNaaTeaSyo7q3MY2Kdy+vrF+UbVotRvSJUtXb6heeXZnS/3OJ7eMnq0nIb3eHXCn1x1ZseroUFWwNCjky7h7Lu3Z/pPDPW2NIPc+qOCeAVPSDGfWQE86m+EgeRU8wPTRhJzPcDNX4ZzeUp3tIHMZLizaJMhwWEUrZIO0IM1LFQJOQla7Jzu5xepmLC2PqImOvD19esfermbmN1Op2WTH7MyzC0CGGeHuQkGUlWsEC0PdwdGWoFAhmGgPgHqJSqJAN5yRo24KoqDgCIedGjtgJJrCTTh9VYtnYgKYcsoPRxzebyX79/QUN/g4JhEub6v0Yo1yhbQYGae9e23/wcGKIt0qF+esWdG8amLqdSrTC6D3i1wEmZEoB3WsajT4nycNshypOUkQPBbWFoeGuSar4cEEGLK+Q7yCBfIHd1KXwfuPfDm9ZILcHi3/ud1oXIj7vlo9kUfYWoilh4AhAGFrKbZ8ENiy3ETJNJlgCOeGpgjIFdIJR6AeolSLoc1HSJ0SGOZ3RbaYFIlJkkakqFsK+x6GfVN0N4AdTsRhN9ffultI4wRkQb9B5meYFBPN1s5rr+CSJmoTyVAyo9xSVz1YPnp+LNO174fDdWM3LgmmrT5rUl7ZmNuyKCZ1jHVs2D42xoyy70op5aK+qGnL6RWbf7BHdkWq/V1uv+RPLLu5s2m4M1JawtyE1OyaAV3e5arUbjYo+2bCwd6mFmZq09wei8VKwQXXsoCm5mqMkXe77352ePiH+7q7QbzhZ+/u/lFl75b6+s29lZW9m+vrt/RWMqcvTj/V2/vU9MWL09/v7f3+9MWzb95VW3vXm2fhmMnc9SYq8Ab3EXBAHK18pdzEE8LOgMnJq6m+ULVoNRxRY8Qne1E+bmmOp6Htmrs5qPJZHMWh97dFoqLOOVs3EhrH6udM8WiaX0aeGbO7GLO/qXNZcuN+n6Ojf331hecnxzYkljZIkxuG5PEUrSpHxWyZc8fa2sXVrtdfpLXlrt2BhpV19NvuXW0N0zE1Fg9f+S+8D/0H9CxWdJiyGaQe71frVbaFymXG0mHGH1f9AjYgH0OMmZAHlctRCCvQmdBhVL6KMcxSqcclmGGZURRoww7Sz6QyKTqbufDCl/HePS/cWtd0+/O3vPFG57aF4RPfegP/SXFyofotD6+98dzOplOx7tHGux8A+0MmIvcDl1mRV3YVYQrL+VkkIVqIFTI5vrZKZIJPKA+etvu53xitWo3N9A7vEx6Acs80fULKhcQ2idlldgDzy8oFcoF8jLKoBw2ih2WLFmu0lQLDaFrKGfAaONsLzk4UYQ00KxpQmiAOqr41SBVCq0V9unxXz/Mq+XtoY1MBkmsR1o5d/9jXPjEo+5csBsv3Lh5cMtjd2dwoiW6XxcQSlMVZPR0HOF2iw27GzjwwoU6ZG4JQFNRmU3jms5nBNSk2v0QFA1ZbwkIFj99q2hLHKDZWnBm6Z4lcG/DXrhrfPb6qtvHmJ2+66fym6hU9ZZWNjR03ZIYO4B1huX9oQ7KqOdgy3Jbb1FmqfLhhZGTDuhFP1ULysd/bKvFmeXH3rcuTZlvcIYUsrM5etaK95bYbs+XdQ+nu0YAtly0fKi47PNh9a1/iq/+UEh49z2q8C9PigjK3N9nCNGwbGNy8eTDeVROgeJug/ob0G0SVctKEaV9AUxLE2xqaCSA1ULuzeGaORpNCGEpkSApYoNkJq10B1HEQDJhWeDiF86m9MmZzGTFrCrouKL80+S2Cz4S7HneUGJX/Nnl8SUj8U/9UJOAei1XZb/YU6YsFxW+24tN2o5LkTgBuSq58xmqhLgEOL6FVUmkeO8xTIMcZ2RTEWCNAhWDF4PICSVTMDYIo7Wq1uj6k05mgw4XFvRAdGjXvon4WFzq49F/zBG3qaLXRn682oGfAuLYmUY7DOByVwpIkWPWQHsCeIDNg1wyy3imbArCFBSQU5kkYvup9+bdov0ausm9ed500lORKUWleEgFITqWCq4t96dp2gHw8qVRk4h7JY1Ur/sSe1p17tlkcD8eIXVhNXp+SiTy/5r+6HaC66qE7Ow1c4UQ+2W3imKvIQgCyCIWALDCt923XEQb+ttbnPfiMcv85l5v/RGvmeLP2A94vHFM+tDvxveQcUMejjnKHM+5ghoE64H1nlU8YA/cuNGn8S4IGxyArWV1O3oxTRJ1RuYJYwzO4YvOoxWJe2r2xJRBo2di91GyxjG5m1v1KuXMyIOoqd7733ke7d3/4/u92VhSJgUnlTjXvHIN6fg/6d+RHLhlwj1tm6mDoG3yeUsYSz84b5WuikUxNtplkwaDHhGDcG0wGzZ6K9kTQaNIFi728Pt2yxxkLWp3hdCA+dONA2G+wGExFpakFJe0qx3df+RyKhb9L7uXYgSf+cOS+Dy+sWnXhw/uO/OGJgVcbtj+yfv0jOxoadtDj9gbm9IN/eXFk5MW/PHjmi5dGRl764sye1w51dR16bQ8cOzsPvabK9AB0Vc9A3jFA3pknk2FWJghMMSbOyiSq6UYVR1RbJvaZgcc+OKzU418c/uCxgUv1284NKZ9h89C5bfUgwefPDXGhdRf/fGbPP9/bMcV2HPwp2H2T8gn+Lfc75AOf2nTUpzUM1JrNuAUHSd7UKaY2W2vFzZtHtYQ3aOccqzXwREtd+xY+NGl2Wg1c5fjv3v9w9+6P3ntvZyVrFJzmSXwoXwM/DR9rQTdSyLozORTKYQHymZDGa19+Ge7TtS4gwPUQ135qBYeZsiHO5UcMhSI+FioTwQq6fFTPhLRO5T/Ca/ItbpfywTN2m/bfWJ32WZ3d9B3lfVz1A7tH+ytt0SWty/YY/gt+32RQHtM79LjGZFGSCga+3OWyKD82OdXpFODrafJHwFcYHcjPOww2zDE+L1FHVD71lMycFiaDgbmpp2veJKqASZ8s0sGH+ZqZ1lVr5qagYXd4bgpKSeXqcRUUq/jqcdXTk02PjqrjkG2PDq87mDZqosqP++7KJG9uUyci5O0vP8Hvdq+YGVi1NfWUTj1H51VNmfy8CniftviX87zvprxfUeD9dSBet9xhBl5kMNVYjVBtvrnUaGa/QvNfaGZ0PKNONjFOJUpDOIADgmALS66ikni+LyKPc/eCnxfIGROm1DW7K7pmJ01hJxDBj/zqLk6tY15jVEsNQn9CCPHQFqn8+/yYw/vwqQOusOB351qYjknl5kJPtP/CUyy/3qxdMzZBaZa2RCBPIzj9U4g7cwF9M5MeuNebZyLBIdhV9PEa2nrRCgSLGZH51FikVOHfTg8Z9fjXSpo5S47YJNN0x9GFxpCF+dnRPAZOg77fghjXo5RM9WcgmukvnVwvTfUqzNleNKOmHukF+kczPXR5tNMTNaJATk+/gn+rlDGL8DTiQg8qvSeV9gdhV4yy0E9sBE6b98sTS77xlyf73+eXJxIwe81lDX312b6sP923ZceWvvSCrY+O7n2zK6NxmGwVnSMd9atbxMKtmpHTQ5ufl9k+f3G4uDi7sDzbnY7E0kvGewceHpfX3rBSbyyrKgs1D2QaFqelSNWy21Z1HNzY1Al1EPAi0lhB0zI6RS11auamqIaZKapbSDTMTVGdNNvhwhAVz09+Es4Pv7Bk+LZL5K6YDLxJi8NcyJVxF/M4rDVB1tconOQ6qdz8lPJzTsexOk65/D1YYZvaXSkX13nIUcFLT9zZYHCBi9wveL/8PfnEJNpsomnKX4jvt0BeDZVX7at7qZiGtnww0ckR0oCHOavqYQjZDHlLuecVZYILnfvqNvb+c/m46cH/w5Qxx4E7ITci2rIsKcQkwh0qgdogOnrw75UQc/yh2ZkD+zh3H8rg/p5JA9CSpVSwEAoxrYbJSRjLvp5JE70O31l6j1PvkRxct3/t+uuXDg4O5jcX8z+/sir+dVAloV4gQIpbfRGj1Rq17YW3lUHgqU2AqW0O5t/0gP2v3Tnyt+0MLR2AD2FmzdwzX7sS9AMuBntmUKYmLQiO0jAdyBjc/89AJn9l/oRGUsnomQ0O76lk/+2Liut9HBMvLaNTmrP0QlOWYxJwXuHFZHpSGS9w1NKr5jYLx/oPrK6wD6hnLcMTU68XaOv/AJ8t2woAAAB4nGNgZGBgYJSK27hh/a54fpuvDNIcDCDgFXxnFgMc/FvALsR6C8hgY2AC8QE3Twm4AAAAeJxjYGRgYGP4x8DAwC7HAAGMDKjAHAAitwFjAHicY+Fj0GZxYXBmMWHoZ7Fg8GZWZHBj/s3gzXiegYH5KkMIUHwC0ymGZiDdA8RerDsYRIF0L9M6BiWWhQwcLFEMExivMeSxZjEwAOnJjOcYckA0cxKDK1BdLVMhgwQLH8NGII5lvs7gB6RN2VIYJjOxMrSxKAHVzWUQZj7C4MC8mKGBpZRBAYSZ5zNwM+UyTGP8z9DD6sPgwfKGoRvIT2NiYVjOXM4gDnIHiw3QXCBm1mSwYX7BMJF5LYM5uxwDD/MzBgmmYgZvltUMEgAPEyvlAAAAAAAApAEIAUIBlAIEAmwCbAMCA24D3AQqBJ4E+gVuBcgGBgZmBogGkwatBtcG8QdNB50H5wgXCEMIqQjzCV0JdQmzCeMKqwr5C1MLyQwBDC8MZwyxDOsNHw01DXkN9Q4pDnEOoQ7RD0EPmQ+9D9cQzQABAAAANwBaAAQAOgADAAIAUABdAG4AAADwCnUABQABeJx9kN1qwjAYht9qK2yDHW4nMnMDLepOx8AfxIlKEfFwEGyrgTaRWBne1M52ITvezewtBsGTpiQ8eb43H2kAPOIbHi6jw3lhj77juIEAoeMmXtB37DMTOw7wgE/HLXrFpOffcfeOL8ce2vhx3MA9fh038YY/xz7a3rPjAE/eq+MW/cfSiK05nK3a7UuhdGZsIUtltMjMSSfRcFCNcCRtrkqzMoXUszhNZC7i8aQ/XS/m4jZyu9uk9lg160Xd2wKWMBDYcj3gDMuf22GPkk5BI6O3KCBpFFnTV+5EShBhiMH1CzFiziJnsmRmxVmd1JjxKVPmJWuCPMaEDz3FGgvMaeq61NU27GpxvN6sxxt16078A4cLWC8AAHicY2BmAIP/MxkOMWABADYOAl4AS7gAyFJYsQEBjlm5CAAIAGMgsAEjRLADI3CwF0UgILAoYGYgilVYsAIlYbABRWMjYrACI0SyCwEGKrIMBgYqshQGBipZsgQoCUVSRLIMCAcqsQYBRLEkAYhRWLBAiFixBgNEsSYBiFFYuAQAiFixBgFEWVlZWbgB/4WwBI2xBQBEAAAA) format("woff"); } Choose a brand and answer part A and part B with a total word count of 1500 or more. A) Part A should consist of 700-1000 words and it should answer the following using credible sources and proper APA citaTons : Provide general background informaTon about the corporate brand idenTty (brand products, target customers, compeTtors, POP or POD, geographical performance), and IdenTfy the posiToning statements Provide explanaTon about the current brand performance (in terms of sales, product variety, demand and supply) Conduct survey about customer brand opinion (include the brand elements in the survey quesTons, quesTons should move from general to speciFc quesTons about the brand). Ask 5 people about their opinion of your brand of choice and include the quesTons and their response in the report Analyze the brand using CBBE model Analyze the brand using SWO± analysis. B) Part B should consist of 500-900 words and it should answer the following using credible sources and proper APA citaTons: Provide suggesTons for a successful future performance of the brand (whether in the markeTng acTviTes, channels, co-branding, geographical expansion, redeFning brand posiToning and design, secondary brand associaTons, di²erent target groups, POD, new products and services etc. C) Include a reference page with all the sources var isIE = false; var f1 = [['t1_1',1616],['t3_1',1709],['t4_1',650],['t5_1',1732],['t6_1',1648],['t7_1',426],['t8_1',1727],['t9_1',381],['ta_1',1655],['tb_1',1612],['tc_1',99],['td_1',1796],['te_1',236],['tf_1',682],['tg_1',736],['ti_1',1684],['tj_1',640],['tk_1',369],['tl_1',1403],['tm_1',1688],['tn_1',1754],['tq_1',848]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
Choose a brand and answer part A and part B with a total word count of 1500 or more. A) Part A should consist of 700-1000 words and it should answer...