Developing Nation Problem Solution Source Requirement must contain research you have gathered from a minimum of two sources Pick a periphery or
Developing Nation Problem Solution Source Requirement must contain research you have gathered from a minimum of
Developing Nation Problem Solution Source Requirement must contain research you have gathered
Source Requirement must contain research you have gathered from a minimum of two sources Pick a periphery or
Developing Nation Problem Solution Source Requirement must contain research you
have gathered from a minimum of two sources Pick a periphery or
Developing Nation Problem Solution Source Requirement must contain
Developing Nation Problem Solution
Developing Nation Problem-Solution Source Requirement: must contain research you have gathered from a minimum of two sources Pick a periphery or...

Category:
Words:
Amount: $25.31
Writer: 0

Paper instructions

Please read the requirements in the attached file and provide as much reference as you can so that I may use that as a guide to improve the paper. ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:75px;} #t2_1{left:76px;top:102px;} #t3_1{left:173px;top:102px;} #t4_1{left:76px;top:128px;} #t5_1{left:76px;top:145px;} #t6_1{left:76px;top:161px;} #t7_1{left:76px;top:177px;} #t8_1{left:164px;top:177px;} #t9_1{left:76px;top:193px;} #ta_1{left:76px;top:209px;} #tb_1{left:76px;top:225px;} #tc_1{left:76px;top:242px;} #td_1{left:94px;top:268px;} #te_1{left:113px;top:268px;} #tf_1{left:113px;top:285px;} #tg_1{left:113px;top:301px;} #th_1{left:113px;top:317px;} #ti_1{left:113px;top:333px;} #tj_1{left:94px;top:347px;} #tk_1{left:113px;top:347px;} #tl_1{left:228px;top:347px;} #tm_1{left:113px;top:363px;} #tn_1{left:113px;top:380px;} #to_1{left:113px;top:396px;} #tp_1{left:113px;top:412px;} #tq_1{left:113px;top:428px;} #tr_1{left:113px;top:444px;} #ts_1{left:113px;top:460px;} #tt_1{left:94px;top:475px;} #tu_1{left:113px;top:475px;} #tv_1{left:159px;top:475px;} #tw_1{left:113px;top:491px;} #tx_1{left:113px;top:507px;} #ty_1{left:113px;top:523px;} #tz_1{left:113px;top:539px;} #t10_1{left:113px;top:555px;} #t11_1{left:113px;top:572px;} #t12_1{left:113px;top:588px;} #t13_1{left:94px;top:602px;} #t14_1{left:113px;top:602px;} #t15_1{left:165px;top:602px;} #t16_1{left:113px;top:618px;} .s1_1{ FONT-SIZE: 46px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } .s2_1{ FONT-SIZE: 46px; FONT-FAMILY: CAAAAA-Carlito-Bold1; color: rgb(0,0,0); } @font-face { font-family: CAAAAA-Carlito-Bold1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAABbIAA0AAAAAJjgAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAAAywAAAka717rMY3Z0IAAAAiQAAAAvAAAAOCbnAmBmcGdtAAACVAAABRIAAAp127YujGdseWYAAAdoAAAMjAAAE+b9x/8LaGVhZAAAE/QAAAAyAAAANq+W1EJoaGVhAAAUKAAAABoAAAAkBgIEoGhtdHgAABREAAAAcAAAAHRnAQiRbG9jYQAAFLQAAAA8AAAAPEkDToNtYXhwAAAU8AAAACAAAAAgAc0LUG5hbWUAABUQAAABHQAAAkyex49bcG9zdAAAFjAAAAATAAAAIP+cAMJwcmVwAAAWRAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nM2QPQrCUBCEv5gfY4okJsQYDOI5rAQrOxFPYCEIglh4EW/gBTyGeAQ7S08h675oEAtbceHt7uwss8MDbJ6vxNKMNVJkuiMOe61dYp34DBgyZsKUOUtWbNjJXUQ33syMhTJrtoaRm1zlImc5GV05mPzSriMkqS70K+Qrl5Lj6tQj03lIRIOWOikrF//nCMszn9awHddr+q0gjOJ2kmadvFv0ylq0ybco6qZX5fYTdPCt9GMvdxMvg0CthZHed8rY/ir683gAZxU57AB4nGNgQAWMbAyHQJjVgIGBdS7zQwaGf/vY5/29xWr//xOQ//H/x3/LQHwAAXsRYQB4nK1VaXfTRhSVvCSOk7S0WSioy5iJA7VGJmzBgElTKbYL6eJAaCXoImfrynd+g37NU2jP6Ud+Wu8dO2YzbU9Pc3L87jxdzXvvzpsncYyo9CgQ16gDJc/6Ulp9KKXOo7ima14WK+n345psJp6SFlErSZTMdgYHcoHL2Y6SNYI1Mp71Y3WksmygpNqPU3gUn1WJ1onWUy9NksQTx08SLU4/PkySQApGYZ9SfYAUylE/lrIOZUqHXq2WiJsGUjQa+aiDvLwXKj45nnULjRpgpDKVYbt8rVzPduK07w3uJbFO8GzzfowHHrMfhQqkZGQ68o+dghOlYSBlLHWolTg6HEhh70jcfQSUUiOQKaOYVaGz/2fJ2VPcQTbThJR0y2Y1PWQ4vs4rpXqqOpkeUEVbtONRGFEewp/El2JdD7aGL1dMXi53xB1sBTJj4FJKZqK7JALoMJEqV/ewqmIVSNUoOWUzVEhoH7FkNkpVluI8UEMgs2Z7N86n3a1kReYP9ZNA5sz2Trx9f+j0avAvWP+8yZ256EGcz81FyCCUqp+IE0mhHuYz/KniR9xlCFOs9+PchVo4njCD1gg706hpvHaCveFzvlKoW0+CSnrIvwfvy8q9Qc/ccRY0dInE2Th2XdcezlvIstzZjR2Z06FKEfGP+XnXmXXCMEvz+bIvj33vHJR5G8S3/EBOmdylfcfkBdp3TV6kXTB5iXYRktMumXyKdtnk07SnTV6hfc/kM7RnjFT8fxn7LGKfwTseYtO+j9i0HyA27YeITfsRYtMqxKatITbtOcSm1YhNu2JU2/ZH3SDsfKoiSJ1GVlk05kqjFsiqkbovdfToeXRgT71BVD1oaZU9iP+Wga4I5MJYaXdZzjfEXVqzxX38ohAvP2oYdc3m6RtHihM2x7WYGJR+Z/l3h39bG7qVN9wlVGJQNxKdnCd6c9AKJDDN0+1Amv9ERR/tg34RR+Es11VT9Xi/IeGdLOvpHi5pvOdxsmCONF13aRHx1wyyQo/j31JkquMfZk2tVDvDXpeeP1bN4R5S4pDq+EpSXtnNnfhpQRWV97SwWjybhJwqFUwnbdm6iwsUvXobUg6P4bwsROmBlmI0OMDjQjTwgFMOjFffGSAlDGndxdlpROiiLhgbBftNCKLtiMKTlNqX0Ujl13bFjqyobpPALyaYp2vJ81g48svUQMFTXh1poNuQ5op1SwX3RKmu7jEYT+uqlYwFjBR1duOmauOzwoxHTsVcxpLXsbozbPXOvh6e0qS2HR2LZu9eG4WPTs4l5Qft1fpOznHdaNWkZF0M1nbSzFfdRdy662N3/0V362X2RM4NI2v+xE1vGrnkZwjMTkG2r3NwJk1ZBfXWuL1OpGVnafR5EzdkuF3b8CsT/oc+7P1frcf0OVTaGnPjhcOuJaMcb1OMk/o3WH9NjwQY1TEu+ROUvDS8mccOL+FCUwwu4uYb/J9iRrmLCxIAh0YuwkRUrQNdVRefohOdtgx7USLAjjl2nDZAF8Al6Jlj13o+A7CeO+TcBrhLDsE2OQSfk0PwBTk3AL4kh+Arcgj65BDskHML4B45BPfJIdglh+ABORsAX5ND8A05BDE5BAk5NwEekkPwiByCb8kh+M7I5bHM33Mh60A/WHQdKLX9hEULi4GRK2P2HheWvW8R2QcWkXpo5OqYesSFpf5oEak/WUTqz0aujam/cGGpv1pE6m8WkfrY+FI5lOJK/wm/H8Ff4wH4MwAAeJyNWGtwE9cVvnfv7sryQ/JKWu1aT69kvSzJtiQb+e31C2wgxkaGYjsxGGwMBEyAmAAmBQIkhDSPyZQmTQKTdGiTpjMMk5gmpYXOpDPpdJqG/GuTaTvlR/ur/QFtZgpjyz13JdkygQbPyJL2nrs65zvnfOe7i1gURIgscAeRFyVRE2pDZ64gzCDcseayrX+TWosIgxmCdyDMMpjdjhBiCGJGEIu4ApYbQXo9P4B43tCJCgp0A0inK9F12dX4vdt4pEe8fugb25c2Daklba2CYAn6vZUOT6EcNrfiRNzFiBYDa8TegL+Vrav1ez0GxusJmGtbmewifK1isCIoSXj9vf6lsZVTa4O2UE3Yw1kvmXgxEAs7Q5WeqGIzVpT2iL64yxH3ifDucMF7+mPyx7lQO1k7N8tuiDb7ujY31q1tCHk94sieitpKb6BacfuLjcWu+dW5bc4YfY+xW+6e7Wb/CRFh5F+4Tc5ybYBfg7qiCWPOhRmW6YAlghHZgQiLCYAACynEcZZOxLJMCjGMyHRVw094PbwYxgZMI6GfLS4+F1ggmUEhEV9RV1vF12lxWyVSV2i3mCNNfYnhkdjA5O7JgVjT/h/van5qaquvT+82yYmu4dbh8Vj/5OOT/bH63ecn9v+mm11hERyKY9OqaFPYE6jrfzI1fGG6q6xKDT5tNPmivkeHE2rYXZEYPPpo7wu721d30myh1oVbrJHcQmbkRn1rLhuhKCRECEqxGCGpk8MMg1MQmogh7/ddkTEk1yRaMLKXWdyiu0iPzNjMG8M4L4M0MjMN0q8hYGWCe2aPr1x5fHbP1JUTK1eeuDJ1YGrqwPTeveTWqtPXpp+6frqn5/T1p6avnV4198k758+/Q180F48v3CI3yE0ko361UIcRNkI5M1DOHvDczEE5YqMWWYqAgyUM9Tp3Fb7TJZKCMGQCXhfDNxnJPsXs5c1hLFiskIikkBC8Hn91NmN1At7Z19ewPZp+S1Y4U9PLWweODobJzfnnN44mIsxnc25J6mlaXT9+NsU8hbR6mYKfv0r+A7ceUIuKeIZBEvQJk+05M3UMpTCgaAQUWbaE1aClX0kOVCm3suikUuFTwMmEAAXixrRsJB31UOsZnTB1LuDmSqKH1rVXmhmLYKyXvcmwx0BuOrwTG7a6r5uMekugvmL+dfAvCRh2Qc4r0U61sBLKVs66R7NfsVTWDCbMYllLFD82BbUtUn+/3UwG5z+Cdvcvr38D1ATATAvdjQ0kVxy07Jk7RVaLuTyUrKx9JF6267FYY1CRnKWrg8Obx6oHz+3raNz37tSOC22kwCBY7dbI+oO9b74LJS+N1rT5jd2nfn1kz9Xn+3q7aV23QYy/gxj9qBrNXKEB4myAAQQog8s7gLUw4fFIAeY4lNJpVb0sxoeypGGqcjCAUbgyUB2sdjmsAD80gR/79XlNoLjIN6OWPLxOqa1iGPvohf0qXyIJ85f4YMdwMjnQUiM5TL2h8cenEpMfnFrTMXP5ybGpUnxRiq0mt1oOvLfb6bPqe3Z1KXa3nQLgK+167rcnJz483Xdl32S4r9mLtP4+iBC7h6tBZagCxdVqAzAV7kAsjwliyQgkTCu34k4GgipBXQhVeBw2sJajiqAzQU8A7WZD0LmwBEkMkCrgaxoLdHMY4++m/4tfOX39cH1F93h7WcSMQ/9q89w2+jxDz6qPNTsPHT2DF9KYq2nY/tKG9umxNZIh4Eg76vAF2fJLT3MqNrZTy1f6OvkCeqYMRdClTKMYRcwx5W6G5QjGLOmwa1dI3pWhTEadEAaT4gnDMFKnDvomw1i01wXUZc/c7f5Gcs5IVQASAiRBrdB9bYaGVLPdRhGyRewRilHQKxRQjLxCliuyc0uitI4BoaQAWGkl72LIF+nGV8bWndpS1zz15pbomrY6uYRX5PTvKxoTEat/KBHvb3TbarrJzbt/wb9o6e165tqRvddeWFfqqrTFJevclwZHyI4/jgYC/TODG6Z7FYQWFtAw9OEb3HnkQUXw0YOALYAQSwrmkV/1Qhwa2Rk6WZzlRcgxQGMu0mMWsybOHgY+WPrTfcBhrntLVwyuPg13mgGmJUhWRSZvP6VQRARSqkWOZ9Lk5pwbDGHPenYbfpV7G6aJSTVSLqT4GVBXsIIRwjhvFlCU8Ku2SLNS3hAuKws3lCvNERuHlcw3RWmk7430nscR4s3QyRE0rBYZeIZFYShiSlflkFYrD2lCKZAjlD8LdBwhpIRAPm0aofJaEqn30tLikOZbBEW8okf0BxS9dZFWCeUh+h9KHoKr1ZJHP1AW0wnH6QwQ7A0da6KbZ1zyqo2bawZPDlWl365orban+9cmNvnJTau00lHjtUykYisjYmLse0PzZ5hDH0rRzgj9sCVVVTkfhbiOAox/g7hsdJLRfiwDSZULy6xN2uyMAHLOTjItJljKzYjsSmZI2JDNKwbyh8RSHBn3j2ruu9TVqTgdYum+vsaJKHW41xXzWurHX1hPPdwwGo/O12qTzLxwi3mPK0YK+kQt1GNM3BhxuUnhhPIq1iqLDCDaOzylx0FKj6LWdsL/N5I1I4c2c+Aq5rkd9xqjfFswA4B25WwfYDYEbQpaxGGTRJNQajQU8yxSsFJgDHMefx2d7C04aQYZJyREr5AbRYCWAeP3Tpwdtjheq9NXn/r6a7/XXAZTs8hQ8EjtaeO5ZxiX3TbhxHwo/fns/L8jMX2xvqh4JhyhOL0I/84ByxKt7imfZlpFKIW6DwGJ4nPAkgVgkZlMN6BjJZi/B1SjBUjO5QRKA1kFlJYRMk6taZdzEZQDz2h3BbK6Z52n7J3HWFSSWctkjDzlcmVZpVU0lRbwoEIkgEHJ0zbZwQuKx3cvW8UlhbM2vb593anNlLA29++LptM13qZ4VASuig00UK6SpKHOVI6oYmGGu7vtqpHS1M9rfIs0BSxlApU5BrwALGWiLGWh6gGVMDcAprRaWI6xzoSRpkFo0QThyFFMjxz6FJxADKCFwGCgEOt0GYmEBtnMuMrWT/XSoH7gPrR8G0U5DmeWAj1fsGNx+7fvVFc85CaaEKoRBrMagU4PjJN10TAGZeD3+bxewVSkhLU+o/gkoc986DO10A13EfLQcGlRZW5e8EAMfMswyLe+T+Q+xOv4XbkdDzRWQw+2u098lFV9yJeJTQBWpfNBWd5jGUmd14VsMp3e4vOaFnvt1Cp1W5d3k8X5A9qH5Ks5P/Hn91ugZ7Jd60UH1kEvavhBPTEnuJeRCyXV2lLwFneAQMDtKCunDfRMhgYIzswEjivh6BhzIZcg+nxWnQUoM1CFW3Ai1xKatjYwTkxZ4q1Vzooz8dFnNyiNbp6J2P3NIfEffyV+A+dyTHZvOLMlodcfc5aawj11LbNzX2WU1wFQXiXQ8Qba6VRLwokJxDIcjtms5sqNU0kUjGBWogi8sExxUZm1IqOyjqTv4J+duHqksWXm6tMXLx56Yv/Bi/gP6QRXo+5767GtP3qy/bNjU5OH4XePQi0VA7+UAb9cyqTbSAAMIBmOFTHDaUoq7wrh8pQUQoYlHpE6l0QTHGbtOXJ6oJHMaOR0zzpVViWLbAU2OSXlKbdV2iuXlBTMLWHxsUDmgEzzgOnscuGM5KxijqYbXxoC0Gubp344WtXbmpCLOJeMXepo2L8pHl8PzBTr5c7P32ju7To2+8ThT198xKRUO1W7SMINK9Krq/2+gWPD/ft6PFrtaDoH8FrUOYYH6Rzu/N1tYAh8dnLhNp4lnyIvKkInEWU0WyFlNBsqZH6CmtZc9gNOIpC0FrHWLUunaDMkicAoG8m7OnQlGAz6WFc4c4I8DPd/H5cv11Fgpumo5D1PRw5Lofry8vqQLGfepefd9UFZDta7y+uDkhSsz9yzcuE2G+DaUBR1qe1mOBCBhoZZjggLcwftgBHCsYjbnnt4YenMHQ7gdzEK+Jx22SoYdRyK4qiOHmzc90wRXf4Rjz7TgInSiskbonFnz5fnnvvTawPfufDnU89+3r1JL4lioGFjZ++hjdW1Q4e6Qx0N8bJCEXeU7pvYNXHlzvfP3Zkd39w3U2Qq95e3TP909573p1v0UoW9oCgTSwJ0yTxopxZ6gm1ZfCLzjRPssgczUv6DGftDmNFK/eihn+BoxckuHgGYXxVKgilQ3Rxo7vC3rRtc1+aPj708WjO6cY29qcglWwNVak1Fwm3sGD8w3lE18txw7NGBThspE0rMkjlZ5Q65ba5Q88bmniOb4iYlYtsiWGSnbHIHxUiswt+xe6h17yAsVNn/ByQbM4h4nGNgZGBgYJSK27hh/a54fpuvDNIcDCDgFVzQzQAH//axCbMuYGBkYGNgAvEBKTYJIgAAeJxjYGRgYGP4xwAkmxgggJEBFcgCACxHAawAAHicY+Fj0GA+waDG4stgx+LNkM10gyGPOZLBnIWdwZ7xPAMDSyNDGVDcnvE7QxTrQQYGIF3L+IghiK2JoQEoXsN0jEGYSYmhF6SGZT2DEAgzdTCIsDgxFIPkQeqZTBmamZQZKllsGLSYDRmMAUQLFuwAAACiARABaAG6AgoCfAMAAwADVAPwBBIEHQQ3BGEEzQUfBbMFyQZDBtMHcwe9B/kIkQirCNsJBQlrCfMAAQAAAB0AQAAEADsAAwACAFAAXQBuAAAA5Qp1AAUAAXicjZDBasIwHMa/aJWNwS6DXRcYeGvRHnYaA62IiEoPIuzY2VYDtZFY2XyFPcyeY0+z4877SjNPPTQlye//y9ckBMAtviBQtQf2igXuWFXcggPfchuPeLLsMPNquYMbZJa79O9MCuea1Qs+LQv08G25hSv8WG5jgl/LDnri2XIH9+LNcpf+Y6nlRh/ORm13hVR5qs0+KpTOZapPeewFw7K5QWQyVWh3pLO47LMwiaNMhuOJP10t5rImVqPWiTmWWw+8fs0qltCQ2HA84AwDhS12KOgUcqT0BntENIqc05fuRIrhIcDw8rmsIqYzJgtmXIw4Zsz9zzOESDhHrCR5zPfyMcUKC8xpmu3WLLXmSQbHy60HvG2/2b9/3wZl9wAAAHicY2BmAIP/MxkOMWABADYOAl4AS7gAyFJYsQEBjlm5CAAIAGMgsAEjRLADI3CwF0UgILAoYGYgilVYsAIlYbABRWMjYrACI0SyCwEGKrIMBgYqshQGBipZsgQoCUVSRLIMCAcqsQYBRLEkAYhRWLBAiFixBgNEsSYBiFFYuAQAiFixBgFEWVlZWbgB/4WwBI2xBQBEAAAA) format("woff"); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACO0AA0AAAAAN3gAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABPwAAAx59jG2NY3Z0IAAAApgAAAAuAAAAOCX+AcJmcGdtAAACyAAABRIAAAp127YujGdseWYAAAfcAAAYRQAAI7IOQzYVaGVhZAAAICQAAAA0AAAANrBeQG1oaGVhAAAgWAAAABsAAAAkBgIFXmhtdHgAACB0AAAA7AAAAP7m5xPTbG9jYQAAIWAAAACCAAAAgjVzLEZtYXhwAAAh5AAAACAAAAAgAfsLc25hbWUAACIEAAABFgAAAhOXL44TcG9zdAAAIxwAAAATAAAAIP+cAMJwcmVwAAAjMAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nOWQy07CQBSGvxYoiwIl3Cm3Uu5ULiJBIYREY0xcaIwxMbrzNXwr3bvxHVwafQEeQcdT260btp7knJk5+efM/w0QIcgqmlT0kpxkp9lE+ZZGF0d2htQBE+asOOGUM8655IobbrnjkWenrL6UEr1Dnz32RXcc6i5Ed/2re+Ap0KktKf819SH5orbqXdZXyTe/A59W4ELClXnIxCD6Yfr1Pux1KNDGY8RUXl2LyxlLmT+mSAWLnLA10MVZghpxYXCFKI9JTLh6ZLFJ43M3GVKnJaSbf06PZshsTY9EY0bcTCRTVjqTzeULxVLZrlRr9YbTdFvJTrfXHwy9xeF40im0vcVoulqv5TLlwNtkJhgH/i/CMkWGcbHi0xyF3q1ctaE7iVp87kbzZszoZe10KdIc1lvsFIPNbvf+iB/x6F24AHicY2BAA1sZOkGYVYmBgbWd+RIDw79t7PP+3mI1/P8JyH/4/9O/hSA+ABumEdgAAHicrVVpd9NGFJW8JI6TtLRZKKjLmIkDtUYmbMGASVMptgvp4kBoJegiZ+vKd36Dfs1TaM/pR35a7x07ZjNtT09zcvzuPF3Ne+/OmydxjKj0KBDXqAMlz/pSWn0opc6juKZrXhYr6ffjmmwmnpIWUStJlMx2BgdygcvZjpI1gjUynvVjdaSybKCk2o9TeBSfVYnWidZTL02SxBPHTxItTj8+TJJACkZhn1J9gBTKUT+Wsg5lSoderZaImwZSNBr5qIO8vBcqPjmedQuNGmCkMpVhu3ytXM924rTvDe4lsU7wbPN+jAcesx+FCqRkZDryj52CE6VhIGUsdaiVODocSGHvSNx9BJRSI5Apo5hVobP/Z8nZU9xBNtOElHTLZjU9ZDi+ziuleqo6mR5QRVu041EYUR7Cn8SXYl0PtoYvV0xeLnfEHWwFMmPgUkpmorskAugwkSpX97CqYhVI1Sg5ZTNUSGgfsWQ2SlWW4jxQQyCzZns3zqfdrWRF5g/1k0DmzPZOvH1/6PRq8C9Y/7zJnbnoQZzPzUXIIJSqn4gTSaEe5jP8qeJH3GUIU6z349yFWjieMIPWCDvTqGm8doK94XO+UqhbT4JKesi/B+/Lyr1Bz9xxFjR0icTZOHZd1x7OW8iy3NmNHZnToUoR8Y/5edeZdcIwS/P5si+Pfe8clHkbxLf8QE6Z3KV9x+QF2ndNXqRdMHmJdhGS0y6ZfIp22eTTtKdNXqF9z+QztGeMVPx/GfssYp/BOx5i076P2LQfIDbth4hN+xFi0yrEpq0hNu05xKbViE27YlTb9kfdIOx8qiJInUZWWTTmSqMWyKqRui919Oh5dGBPvUFUPWhplT2I/5aBrgjkwlhpd1nON8RdWrPFffyiEC8/ahh1zebpG0eKEzbHtZgYlH5n+XeHf1sbupU33CVUYlA3Ep2cJ3pz0AokMM3T7UCa/0RFH+2DfhFH4SzXVVP1eL8h4Z0s6+keLmm853GyYI40XXdpEfHXDLJCj+PfUmSq4x9mTa1UO8Nel54/Vs3hHlLikOr4SlJe2c2d+GlBFZX3tLBaPJuEnCoVTCdt2bqLCxS9ehtSDo/hvCxE6YGWYjQ4wONCNPCAUw6MV98ZICUMad3F2WlE6KIuGBsF+00Iou2IwpOU2pfRSOXXdsWOrKhuk8AvJpina8nzWDjyy9RAwVNeHWmg25DminVLBfdEqa7uMRhP66qVjAWMFHV246Zq47PCjEdOxVzGktexujNs9c6+Hp7SpLYdHYtm714bhY9OziXlB+3V+k7Ocd1o1aRkXQzWdtLMV91F3LrrY3f/RXfrZfZEzg0ja/7ETW8aueRnCMxOQbavc3AmTVkF9da4vU6kZWdp9HkTN2S4XdvwKxP+hz7s/V+tx/Q5VNoac+OFw64loxxvU4yT+jdYf02PBBjVMS75E5S8NLyZxw4v4UJTDC7i5hv8n2JGuYsLEgCHRi7CRFStA11VF5+iE522DHtRIsCOOXacNkAXwCXomWPXej4DsJ475NwGuEsOwTY5BJ+TQ/AFOTcAviSH4CtyCPrkEOyQcwvgHjkE98kh2CWH4AE5GwBfk0PwDTkEMTkECTk3AR6SQ/CIHIJvySH4zsjlsczfcyHrQD9YdB0otf2ERQuLgZErY/YeF5a9bxHZBxaRemjk6ph6xIWl/mgRqT9ZROrPRq6Nqb9wYam/WkTqbxaR+tj4UjmU4kr/Cb8fwV/jAfgzAAB4nK1ae3Qb1Zm/d16SrOdoJI3e1mgsybIs+SFLil+yLNmxEztpHDuJnYfjxE5w3k4gkBBoQgJpQkIehUKgUMKr0C1sDF3oFna7LLQ923ZLKYezPZRHgbLdXbqcs5TdPW2wJ/vdkRQ7SdntH8sByaO5c+e73+P3+333ghgUQ4h+i70OhVAzaked6NjzCFMI5/umA8uGc02IpjBF40mEGQozmxFCFI2oNYhBrJZh1yCdjhtAHGcqIK1WM4A0GqOmy5NrvPoxDukQpxu55vG5h0Zyxs4cz9uqw3KNt6rCGROydLLRT9ltJsaM5Ug4y6SawnLQRMnBiNCUpUo34TJBYYmXMvDfp84F+f7a9oneiC/WVCcx/E1Gxh1LxSu705F0xK13GdZbfBHREfHyvDfiECM+i/IM/Zczyxvp7pmXmCX2kM8SzI6kU/3NNaEqx8RuqSEajmci9c28nbfPuhzVPp73VcOD6gTM+MX7U8wsWRU6gRDzFBtEBuRC/pwHURQeRBgbCoim0SAMMaIuqVqqYoQYJlaDtbAATVOi+GeWYp5a9dC7R5UW/KOj7z606qWW7edGlU+xefTc9hbq7D2/f2aUDa5/+rO79/3t7d0zTPeR78M7+y79nn6W/gBil0C9uW6RuDyPaExhmpoEn2Oaw2u0mGXRoAYjJBbAKmYQMYyd6YqEMaqJhhORhM9js5qNOg0K4ZDOHMOqXzlZ8oP/iZsdldhEEy+nwOtikNNIYDQlDt+7M2t1zu6hEgNT3bnRQoLXW7hGaWTzjtTmp29d2HHTt3ceOG2l7MHcOvqDlqlHt0Q9a4+vjvuqfDptLtIcsnbd8erBzc8eWXzozK2t4z3VCCMBcvFO+g1kRe6cWIHBfXkKY2wuFN1XK1loa0ySMdgkCn4sZnFGyOJWTPkfVu45a/OyvzBatRrB9Cbn4U/QbzhMs6fkfFAqyNQesx3mvxshXGBPIRo5c3Yys6k0M3zSiOZpSwzzMo8L0+ypi3tgYMnHn4CPBRRBtbmoGk1GdSaLSzG24y67DaNKny1ij+h1SMACV/ZjMT+J5wRwZoqEG1LYbvNTlG/b0/s6O/c9vW3bM/s7O/c/s61na48sw0fvNvK9jf6g58iL19/w4pEe+L7hevieeaBh9NiqVcdGGxuL3w1Izb27lBfoj+nfIBGF0Y6cwevhaJZxYIqloIz9UMY+DWYYNIjBbnAmy1KDkAn2AodpWDTUq4TIDTJIXZB47ZiRnOByIhTwO8OuMLxIrA5JWmtM4NX8yOK5agxHeAxJwvvhtzRZ8F1bBCfFZ89PDh0ba2rZ8eDGkS83YHr5rU2JXV1Hz0oda5QXWC8v7Olb2/nlF2/e/tLxpW1pZTlzvn+hUt2RfOWv1h9bVQ32XbqEdkL8NrG3oSDSwp9BwBSCVRXUH1E4J4O19CCEx1Rg5uUMREfQ6zCDGSvriUEOzP2jeY7FbPdYV0M5MyDzLmeG+Ysyg35jJgED4ZntzBk8zh6DzLDmzDBOdZ0JdVVXUXyxxkuRJ77B4zY57nLVSjabVOtyxWUbq3fFyVXc5Y4HbbZgnMx5El73Xcg2J+p/QeQoUs9900GIoKAmXjGALENRlJGCuIlq3OBWKWzlOyM5A9xxIqdsD0mcEEteESZYCEFSiNFJEhpzx4Obl+1fXjM9vqnvcJp+gxcmF65IbTg+OHuW2rXj5p6O2XrVCznlPH2e/hBlUB8aQfflLFqs0dbzFKXpqKFYmgZL3WBpbQXWAMprAOVpxEImrkGqO7VaNKgrohDHqSjkYmAJdbBqLcLayWsf+5NPjOS8S/oxGhzoH1ky0rsw2yZLTtFiYmiUwRk9KTuHKNltZuwopmPEhKHauLlKTGcSuPyZpXBTgikOoQjaYZKyxDfkB/xa+9YYRtWTlanR25bk0j5venhq79Rwum33Y9dd98DmxhV90fq2tu4vpUYP452h3NDohnhD1t+xsZDfvLBKeX/D+PiG9eOuhkX0h153p8yZc/29NyyPm4WYXQ5aGJ2tYUVXx41rMzW9o8neCZ+Qz9SMVkaPjvTeMFj7+b/JtS49x2jci5LSgqjTHe+gWrevGtmyZSTW0+QjuXIPMM69wDgOkrMMFAIyFAD7Sfx5URItrC0mgDMwLJRP8qQwsR+T4Cc/E51m6icUfX6t3WeaTVPU+fVsUG+biTrrbPTXL75nstJvijXCzBjMTqGhS5/SqwBdoqAQjuf0AczQdQzFaahSalYjhqZoBhiHQhqO0kAAaXYQEEQs6DDHQdZqKbWWPLnaLx6qhUAb1QfKmDqSc8dqMGqor2mONVcFfR6nQ7BWaFEURyvMMSkYrpvHS5nL4gB+Lud5qJHcMNEkmLTO7WUd4UXL1maax/tiHac++uaGddkV2bhodWsDAy/tWX5oZVzpql2cb/Xtffy6hKumxeJaI2fCQmXnhnzLtqEU07fn+kA4YDUtWLoktfHY4Ozp7Vapwf8T1lffWR3OyDwgVODSp4wWMAEQKkAQiodA0YBQT0AF3Z0z+THW8MDSVgypXnJf3RxhcwZSJrpBUFUmoBcYPABVoTET3kZDhHVULyb/nCeINwndDxXpHvAb43RTbQ0Glo/IIVnmrXopRvIIbKY/ZM2oCh3ImXwwhQUs5OdZGLrifcW3aP+EXdEvHneNNQQwq1BV0RJe51DhVeJtjjnNgSGWKZK37SWa5+kPp5W6VMwlu6xanZ5tqt3XuWvfdov9vmraxq+mX57J0bnZv25rM1lNWt1QTeLwfmrIJiy04bjZqjxLmBJwHtYaRCZQaTW5CKKBxEGrgiBlynKtBPsukTfDMKPEc3zRuDLDRZIqk4djGC96Ae/f9+wNze03Xbj+1VcXbl8UOvXVV/HHioMNtmy9b93ac7vaz1T3TrR9+QT4+QgY8CjUkROd7JuOg1/1Bng5oDyAdt5Drujy1UiRtgVSzpdRH9jZCIhZfLaI/HRZgoiXb+f8EDioMmbyam4oDhi5zA1S1dXc4BA1HPib1JGGP7LJK1KG+O3rKtMOE+0yJSvj3ZkaK8gq95kNU0bzYZfek+pvmL2X+PUMqKSPQTA5kIy25nQet0AzLEPIq4rID3ih6Rp5wdFAVnaqJD+uuE9Eh3FOhBBCE5yw5EqfKDtleIu9WuZBfoDt/JXaAxYwX32Ez0y3PTCx4thYsmX7A2NjtzVWMBHcPnAgmdiZ/8qZQ+yp2e/1DOZveXbqpldO9C/qXBWiV5Zkx8vPPVXUBewHwMcxtPK7NSaOppkyITs4VVJRBHfNBa0GCJA2Ei3lVv3OqYshSkKcu1lM+xiKyXZZCEckSPuy92niffWzTM+m+UR996RNpMze9oXL4psOeuzdQ2ON5y9MT26oXdoqT28YzU0lCG9PSJmoY+e6dH+j+PJzhL337PW1rmwmf+3dU2idJTIKoz78BypK3QU0K+Zs8ANGS8jvA3ALd/MWEC+CZJf68HtKkLrra0h9JgPx3cQ2oDbUnmtpw5j1AQtQeYJuGNGTCPxCQ5sHNwia2wpQT+XQtSyIhIIBj0uWSCFxBLBLEpgrBy1TjGGxrhJcUTM5RNpndpujrYMtmcGMNzm4defWweSCbQ9O7P9pT0pjNwl1C8e7W1Z3SKVbTeNnR7dcyDGD3spQZWVmUU2mNxmuTi6ZGlh131Ru3ZdW6o3RhmgwuyrV2p+Uww3LbhzuPrKpfWEB1ncrYOBTIOuI7jJrKNJ5lHQXSKqSGqQGS+wKuqv8K1yTW6rwtNNzuiskCTLUFlYBLZ0p8m+dimnAVzyOg9a6LTO91eqkLB1fV+UX/cbs2Z37e7LUL2YSlyUYtauofE9f+g98kj4F1aVFp+EnGVWg6OdjhFuQrHDIm3NBPAn4ErWl9pt2UKLV1SHGT1TvwkufUu9AHs+LHwDNF8VP/P+JH/WkwWmWGwqJSLbWWZ1fMbwiX50YObJiw8OZqNbBW6uSvelEodYRza8YWZGP1g7dsmzNPU10vcPhcjjCSV+4scrnr24ZbO26fqg+n8obTR7J4461BKpTIW9lpH24o/m6pYm2NKwvCOu7EzgsiBblFuowpisxywUwYuk84jCLORYkB2VQWwN6AIKltkFoiLTF4CiMiuqCt5iNHIOCOKg1x9ir6Qeq4kqCwo/svnnKbH8gStktq7FR+SxT6w65BZWb4jebr6SfQ/OZidRUN9RUC8SkFjXn0rXgejfw7vyYkHDOj8lc814dlquJSI2VMqrcUxZtm9+vq3WEtWaTOVDf3ZjfVJBDXWNtLYsbJavNkAwsXb2hceW9uzpadj22deLeFjqo1zt9zuT6YyuGj482+Kv8fLFVv+2lfTu+d7Sv0AZ2nyY9CmC9HcVzNTZabVJUAL+2D1HT0A5oxxeJhr+mAzk93f61jZD+0emNm/oOpQGQX80vnWs+ejtmG4iv9NDhnoX6dCBPzmliqSu2BnjUVRsM0lbijRgWrtkewPdrPe4jTyl3nhOd3EdaM8uZte9yXv6k8r7NgW+nzzlMsw/aa+yOmJ3aaLYTPlsMsXkc1kg66qmcwYZZyuthgNOoy5RGOs0yQ4mFUoPNlZWudNV9TpW3lylOlbcOlxOXOmqH3WrRckjEorYsbfH8EILrQgRHErjUm9Ct0LlZs9+YHPzKWFPz9q+TpnpaWTJ4IFW3s3DHGSm7mhf2ko76Jeiojy1tzVC+i3sOLunGb5Va6qiK69DSU+PsLciPMrkmwH7iU5YAQ0lXmAgSoAEaFzmNZY0sCaof+Xl7KOTQ2CCqkQRux8mypRpiuInyYVItfzFud381PrSvr7LVw1K1oZpCvRtrlEt0h5Fy2HrXDR0ZqavQDYuso2lFdvjQzMvEJggA+xj9JoqjQM4XFrXQ+JJgqzzLYJVIa6RYW4D0N1eHunSZLgUe2j86gaG/09BcDNtP2LzMhQoTq7XpX2Hd1n6bi/2+3qrV277DuoXblZ+ddFX8TKtn2Qrt63rvHaB0zLNngp2BQKdM3WAWBPPsyWA+0Fmgpiy2mYRE3S3GRTEhzu6UVF8eIrtXkDN+VJ+LmzCxmlAD6Ms1xHPgSpKvDC5XBnFiqDokgRMxT1gCqzaDsbACrPZrCVzcdqivFkQjZkx+8bzyM5PXwntMuOcb9oBR+S+TyxOfZk/N/E0Fj/ssVuWg2VWhr+QVr9mKz9qMShwswoD7iPoE6sdc2pssY2CR97ERd/F23qbuTXIaEjrSIWMpJVGfGCuUBvzL2VGjHr+uJKl76WOCbJrtPr7IGLRQf3+8yE9HgZ9uRf+q8tPRYs+D3J+PqTsj8/goRHljqq9OKhfxPvRb5CUaxIxxR3n/BCzxuKooSywzb4tXEwmnmjJZOgNOOcn7Y25/3G921XXV+o0mnb/SzemTHfsc1X6rI5T0xUbXrgp5DRaDqaIqsSDQpb7vSfhYB7qfLllU1vmq3JGgJcbrXngB7qu1D1jzJOh0Bwqhw0UhbhAAADxuWgUAj3pJly9LWt03p2nFeXVewicABKJpzVchxhVj5jRuyBma07gkAa4Eg0w6ia8Egyen2x+cULfXtj+4cf2RpFETUZ4fvCUV311Qd9joNy5+hN/qXVGGg0J7X9XMMwQN2lMlNMDoXvp6vJ99HEzhvsMiXB3DfpKMkXA6k6XC5Asnoz5xcXvaTGtdVRU2v1EvsI93n/va8XRQ59X5hzdtT9oDmhKu0K+BPzWkhilAD3qAlK6hUAwx2X1DGp7nWVgf4AR0Vyn6NeW27yqH2OC5z29k7jxX1J3gD3oM8tZL8tZuJtWE88V+qCTGqoNRCfJWV0T9Mg7o1PqhOQ1NKAH3KO8+ZRO0/8jotN/W2UyPKO/ghm/ZXNqfayte0orCQ/i/8Tsmg/KQ3q7HTSaLElcw1Nse0aI8b3KAHZf+89K36ABUkra414fRNgKOuCsYhPwR1XekW/HDprRvMXXUVVhsC0rsE7niGkASaqzgiyjxRZVDM4dnhjKeOfna1jk8cxA4wyU4w/OJTMZFNMOy4X5RYi+ZDJxJi0NsUEw5Kzkc0pqg89YorCyeVnY/ofyA1bGMjlVeeRxGCDN763OVzS76OO8mF86M379ApO/k3Rffoz8ySYIgmWa8YC80yvRzbBiwQsr5dYzKtWrJqHFcjlSLed5lAbdnJL4po+GArzDQu126BE36r51xXQofPHZxdskh+qZIzQ9sRuMiPPj56kPF3WroqZgW8IcL0KIxVwdICU0VYqA+EEOvgQIpdeIULrXisuR1w2hnXOI11it68RJSEqAst+WSTLryyX0XdqejS6Z6eL8Jb3i0zq382CzLN3+7d8fikPKb56jg7HtsMLn+K0Pd+8a6rXqPMPuHEH7TIdwR6lrf/LuinVqw8wGw0wi1WJWTBOh4iJ3gIQavRiSZSxbyvCyQ6ElqzknFlEtiqUQ9zAN3OX3aqdkPd3GSeBf+5HvKK/iVFytsOvjXacVtyg95Nxuc+RHFO3OhcM5J8HStqrEayD7SWrLH3QCk2JBLxEG9GjDkTv7yOYSNlBQ1gNRioHBIttsALhqoBtYdK+ZfD8z1KMxVT2YAnUnr/5cZMKoK2gSLEdXjenbuEEND9gekRgfQusoMWbp8lAF8XweXFDd4arI1tmgspVwIL5HxI57AzBMmHt/XNNgSkNuW19cty9ZWaCPyKsOinafZBnKAsejWPTsyyiN6Q6V7UzMfseDHUxvHNzc3r2z2+pI9NUE7a1pzYrSe7D2fgVhQEAsbqkQ1pIcxlLJGAxq5mDUqyRgKqnLhsAozdvBaTXUwYK+0+50OeFiQtBZQLPPSR21hsHoAR3YQQ5f3ds7gszc8ua3R1zLcdvxEy9RjW4Cx6O7xDt/BO5TZNwsTeenWo2+zwbqRg8vqV/dnBc99B4buHE9TK5UWObsquenGQ1LL8sbrt83h2Hn2MFg/8Twmx3IgI8PAGn5U3iYwkU1uNMDi4nYCVdpNCMJ6VBFWlmPXDiruKlSiSl7o5KWQQ91VuFKUQftZZAsfToIY/+aY3X26bv2psZ7DHTdeqN8o7z7wu38uabLkwNkdOQO+eIK5SHGnDyVBlF26dOnHyiN4X/HkBZF9zVTx5MX+R1LBxZM6yCe1PTGpB2PmQpn3XeQQJiR7XNiGbekwBwoAq/MNAa4LpLJ06vP01U/Bp4CEdIgh+2+XO02KNNTQQQ8Furf1BVKeCqwxu4T+PP3G5//SurmvVlcxqtNReOFSxkU4TfmIMrBvgf+57/Aawmk2q+jgzDhBq7vGoh9rOArXbZmwWMxLezd1+Hwdm3qXmi2WiS3U+p8rB6Z9kq5+19tvf7B37/vv/GpXXYXkm1YOqDHdrHyEf8n+CnlgbkFH5m6iwO1Z3IH9dFG2JKh0Jm3F2S0TWpozaOdeoDVwtJa84jV8x7TZYTWw9VO/euf9vXs/ePvtXfWMkXeYp/EdxdwhIvK3au5Dl2+goRpKzU9ZxNQGebqIi9eejC59QZk8L/oqPuDdFRUu/tdav/goZZz9jNLToigobGXG48n48YzZU9ZJXD28K0hO1JwgZoiIhQ9E4UmCFeSEQS0tyZ7mo4B5JXpS2Yp0dYANoLQBkdV9LGIOpgtGe0WF3YBfN3idRx+hKSUmxtwxUQlw5486PUb8T/jXYr3LXe+gQ3YdkNHf2RpcM/8QjdKZxthMJxvUOWbeAUxcDz3Zy0VMXE+yr1VAqDOX7cAMqwc0cEL3TBN8ngMErohuc8e0FM6k4rWxmmDAZsUFqqApY2Q/zP0MzJ0nM2ZhxgqYUfwzZsQo3QQTRqVKgUd5nNfMw8wSuoByi2TSDrF4nq7iZupa/HQO3jmRqWxZnrz1y117HxzefGZz3tHrSxkMctva7vzGvOTuPTixfE9vQGodqK//UjamBzAdNvbuAjCtH76lv2Pj4qQl+PC+NWc3p5Nrb1lcaahwuXs64/GFwzVNIx1V+7HcNtS4YHCB5wpsBb/KkF//zsrErzLxa/vHiETfRnguD1ADEYcMIFvkKroCSdhsRLJxgZjKk80qNsvIAhIfnhP+j+csZNsiabdxRSYPqtqBboJug+76vmC9/+7Zn9rcDE/tfOhuTknhH+K315vtylN42M4P0QPK6/XNswfVnoNozFeKZy1OgkkdpbOW9WBVb67bTFgOE4WuhktbxFiN5vKfEM9SY6vjKHVvHONEbVUQ+7CP54WQLFYEYiUt+w32dtCgC3IpEyaVd3lWdNVMmtJMYIIXedVZHFr7PDxOk5Ig/3sFwWJV+PIXJu3u+84cFkO815nvoLqnld0lLD54/gmGGzNr10weIkcbpD3+H24rGTQAAAB4nGNgZGBgYJSK27hh/a54fpuvDNIcDCDgFXxnFgMU/D/5bwG7EOstIJONgQkkAgBWlguAeJxjYGRgYGP4x8DAwC7HAAGMDKjAHgAivwFrAHicY+Fj0GZ5w9DN/JvBm3kugzDjNYbJLBYM3iwmDL1Adh5rFgMDSIzxHEMOUKyH+QiDA+N5BgZWLYYpzFcZQlhKGRTAWIlhMtMphmagmglsKUB2MdC8tQzmQH4tkwpDP7MigxvTOgYl5iQGV6BYP/N8Bm4g7cVUyCDBuoNBlHkxQwOzJoMNEytDG+N/hh4mFoblIHkgexrzMwYJ5nIGcWbx/1/Y5Rh4WPgYNrJEAN25kIEDyI5hfsPgzhLFMIHFhkGc8dX/kyDMlMswDYjTgHoZ2K4DzeJjiAeq8wHSyiwaDJZAtRIMEgDwdjh+AAAApADeAUYBdgGQAeICVgJ4AoMCnQLHAxUD3QPdBBEEpwUBBXcFtQYjBo8G+QcTB4MH0wfzCGMIvQkZCVMJiwn/CkkKpQrzCyMLOwtzC4kMBQwrDE8MkwyxDQkNOQ2NDcsN8Q5TDrMPEw87D28PnQ/REAcQVRCDEQERIRFdEZER2QAAAAEAAABAAFoABABEAAMAAgBQAF0AbgAAAPAKdQAFAAF4nH2Q3WrCMBiG32orbIMdbicycwMt6k7HwB/EiUoR8XAQbKuBNpFYGd7UznYhO97N7C0GwZOmJDx5vjcfaQA84hseLqPDeWGPvuO4gQCh4yZe0HfsMxM7DvCAT8ctesWk599x944vxx7a+HHcwD1+HTfxhj/HPtres+MAT96r4xb9x9KIrTmcrdrtS6F0ZmwhS2W0yMxJJ9FwUI1wJG2uSrMyhdSzOE1kLuLxpD9dL+biNnK726T2WDXrRd3bApYwENhyPeAMy5/bYY+STkEjo7coIGkUWdNX7kRKEGGIwfULMWLOImeyZGbFWZ3UmPEpU+Yla4I8xoQPPcUaC8xp6rrU1TbsanG83qzHG3XrTvwDhwtYLwAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } Developing Naton Problem-Soluton Source Requirement : musT conTain research you have gaThered from a minimum of Two sources Pick a periphery or semi-periphery naton and began researching and analyzing some of The social issues and sTruggles being faced by The naton in The periphery or semi-periphery region and presenT solutons To These issues. Please incorporaTe imporTanT concepTs such as globalizaton, imporTance of geography, and susTainabiliTy. IT is required ThaT you apply The Term globalizaton in your paper in some capaciTy. Discuss how globalizaton or inTer-connecTedness relaTes To The counTry’s background, The issue, or The soluton. ±his discussion could involve concepTs discussed in The TexTbook like The impacT of colonializaton, imperialism, Technology, environmenT, immigraton/migraton, WesTernizaton, Terrorism, geopolitcs, Trade, miliTary, eTc. IT is required ThaT each secton includes The following: 1. Paper RequiremenT: Apply The Term globalizaton in your paper in some capaciTy. Discuss how globalizaton or inTer-connecTedness relaTes To The counTry’s background, The issue, or The soluton. ±his discussion could involve concepTs discussed in The TexTbook like The impacT of colonializaton, imperialism, Technology, environmenT, immigraton/migraton, WesTernizaton, Terrorism, geopolitcs, Trade, miliTary, eTc. 2. IntroducTon of Problem : BrieFy inTroduce The counTry you are presentng and The major social issue (economic, politcal, environmenTal, politcal, war, poverTy, eTc.) Include a descripton of The naton’s background, geography, demographics, and oTher imporTanT deTails abouT The naton ThaT are imporTanT for your presenTaton of The problem. PresenT deTails abouT The social issue being faced in The naton. You can presenT more Than one issue. ±his secton should conTain research you found on The issue and your own analysis. Make sure To include who The problem impacTs and seriousness of The issue. You wanT To convey To The reader why iT is a problem. PresenT your Thesis or main argumenT in The inTroducton. 3. SoluTon: Research and presenT solutons To help The naton you have chosen To research. You are required To discuss in depTh aT leasT 3 possible solutons/suggestons To help The naton address The issue. ±his secton should conTain research you found on The solutons and your own analysis. Discuss The following: why iT is The besT soluton, who is involved in implementng The soluton, and The poTental positve and negatve impacT of implementng The proposed soluton(s). AT leasT one soluton is required To conTain The concepT of susTainabiliTy in some capaciTy. Provide a more in-depTh explanaton and analysis of The solutons and include aT leasT one susTainable soluton To The problem. 4. Conclusion : Include: (1) Summary of whaT was discussed and any ²nal ThoughTs. You can Talk abouT how iT impacTs The fuTure, need for fuTure research, or call To acton. var isIE = false; var f1 = [['t1_1',681],['t2_1',388],['t3_1',1398],['t4_1',1943],['t5_1',1931],['t6_1',1914],['t7_1',335],['t8_1',1525],['t9_1',1911],['ta_1',1701],['tb_1',1955],['tc_1',1582],['te_1',1739],['tf_1',1673],['tg_1',1701],['th_1',1759],['ti_1',770],['tk_1',460],['tl_1',1307],['tm_1',1806],['tn_1',1736],['to_1',1752],['tp_1',1700],['tq_1',1764],['tr_1',1695],['ts_1',1074],['tv_1',1557],['tw_1',1691],['tx_1',1796],['ty_1',1756],['tz_1',1618],['t10_1',1703],['t11_1',1766],['t12_1',756],['t15_1',1517],['t16_1',1392]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed