1 Given the similarities and differences of three contending theories Marxism Neoclassical and Keynesianism briefly analyze the key factors that
Given the similarities and differences of three contending theories Marxism Neoclassical and Keynesianism briefly analyze
Given the similarities and differences of three contending theories Marxism Neoclassical
and differences of three contending theories Marxism Neoclassical and Keynesianism briefly analyze the key factors that
Given the similarities and differences of three contending theories
Marxism Neoclassical and Keynesianism briefly analyze the key factors that
Given the similarities and differences of three
Given the similarities
1) Given the similarities and differences of three contending theories (Marxism, Neoclassical and Keynesianism) briefly analyze the key factors that...

Category:
Words:
Amount: $25.31
Writer: 0

Paper instructions

I have two questions in the attached file. thank you ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:74px;} #t2_1{left:76px;top:91px;} #t3_1{left:76px;top:109px;} #t4_1{left:76px;top:126px;} #t5_1{left:76px;top:143px;} #t6_1{left:76px;top:169px;} #t7_1{left:100px;top:169px;} #t8_1{left:76px;top:186px;} #t9_1{left:76px;top:203px;} #ta_1{left:76px;top:220px;} #tb_1{left:76px;top:237px;} #tc_1{left:76px;top:255px;} #td_1{left:76px;top:308px;} #te_1{left:76px;top:325px;} .s1_1{ FONT-SIZE: 58px; FONT-FAMILY: BAAAAA-DejaVuSans1; color: rgb(51,51,51); } @font-face { font-family: BAAAAA-DejaVuSans1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACa8AA0AAAAANfAAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgErEQYmNtYXAAAAFcAAABNQAAAw51CpbSY3Z0IAAAApQAAAGVAAAB/gBpHTlmcGdtAAAELAAAAIAAAACrcTR2amdseWYAAASsAAAbrgAAJWgGNKtYaGVhZAAAIFwAAAAyAAAANjYFdqloaGVhAAAgkAAAABoAAAAkB28GIWhtdHgAACCsAAAAyQAAAOAIPR7hbG9jYQAAIXgAAAByAAAAcgsRA1xtYXhwAAAh7AAAACAAAAAgBHAC3m5hbWUAACIMAAABHQAAAjfgcoKacG9zdAAAIywAAAATAAAAIP+BAFpwcmVwAAAjQAAAA3sAAAVoOwfxAHicY2BmYGCcwMDKwMBkxWTFwIBOM8IBAzbgACJYu0Akey7jY0wFANXXBDMAeJzlj7lOw0AQhj87juPciXOfTpwT574cIdEgKgQFQoKeBgnRIEreCvFMlDQUSBTIDMYFSFRpmdXOzq7+2fl+IMT3rqNIRjXkJpViovEmDy1Zmpxt9hgzZck+hxxzxgU33PHAk/fheb5y6CvmvuKIE8654pZ7HgMF3ov3LvnVe+Z3fM1sYft1K8hjXA445ZLrQLOliEpHtLZwrOmSF7aNkNWYUKLKQrrmwrBiRooGJhkiZCkQIyx/JklgkKNHmjhRcaXjUBb3Fk3hd/+paxRdZilqSAvrESMaiyeSqXQma+byhWKpXKnW6o2mFdranW6vPyiqzqgyGcw6ir1ab9wto8BPn+W6m9c2QjYpVRcCNV3NfvhNNcxMJFuICVMyYeQEJx5t6065brFTNIfubo1/xycvWkynAAAAeJwlUC1IQ1EU/s49570HBhFZFYNJZBiGyLAaxGAYw2QYhhcsQ4aIDFmQIQZ5QRAZIiIyZMEgC0MsIiLyeGksiEEMIoKIQRbF700O93Lvd+/5fo7MoIOYdYsWjqXJWwhgncipu0IdG0TuJJY9lyXWxDe6/LmLWFsGWUSOKPDkOfxIEW1y5CUj+cA32JK1rWAde7cEs1axxEpWkZyeectekyuv924UjxhHR15QwbV+aE5vbN6G8aKJtvBGFSN/jAjnqNJLRsqouaorEHnwEjRYZb4nciJduruWHfRwpOYWcCI95orRx44WXQ3QnAvp/4FcCfsbqBi8ngzh100Ro3tqrQ72Mc16vUF9o0blIs79jp8JJqiSTqwpd/LpH+AUXV3RdX2Wuk3YhS0g+p+AlhCRu5H2+KFsMXta1ZTdbVpJWviwUrBK7vs0ETXbrsBEIW64Nv0RZpqTuu7Rafo6hiRYtGn2kyHYZmqgrDNY46mKS1whq4eIyDTI6896fXYe2yszR7Lv+kh0HpMI7YuzRgY4/AOs54M+AAAAeJzbzs7GysLMxMigoyCwgUnVM2WDQ2CEwolIRV0dNK6CALvCBoaADbyVCjv+/w+IYJFmjdzAKrOBWZVjA4uq8kNckg91dbwDIhQ2/HV1gZrqmuACFAuOADJBPKAwUNzVBSwHsnQDqyoQeSZsUEjOUOgS6FK26hJItdIFAKovMmB4nIVaC3hU1bXez/Oc15nM5DVJJu8QQJMmJBBAOKJEXqVRAQVFAkhE2gpKASHYBLgk5AJFgRBBhEgDQkAEpJhgQNQICqhtBVuu9KISRa8Rc3vpVWHm5K59ZgLYx3eZnJkQwpy91/rXv/5/7UEEVVgbWAVvQhTJKNF0sGtIuoYVXkUYyms/0/kT5DnTeaYzP8ZIM7LSjLQKhkJzaSD0ubVBdn3/1yekXITRpwixSfws0pBp+ofRRkYa+RIZNapKUEqiKIh1z5nR+9zj7m+FXzYHTOxsD8Eb53UWXBFvPfre+yem44Nu6mZkcv80gxdlFRpp/jQLj7I24hkn8ahQUzObO6JlxNWzzQjBWzRZfyWzJS9yoqDplp9FDS4ZI93LYhTk8pwffKXTKCmBhYdg2YWxXr+PyBnF3qJ+pKlxQ339hsbly5ZJ3k5r8IVPrIFff47fvnQJv2m/79zui3wl70LJqMRMRTyA62mgXvG+YOz117ueUValEJRk9GOF8Qm6JwXePtQRaof7dFzpvNLpsc5chtvmZxlpRWmGxDJSkeFBaQUszn8r7vlLMXvLOkS886wvGq1t1jy8Ej+0Fsuz54RWWpetb3AM9v5851n8zI5w1b3j8Ub8S/wY3jii9E9Tyq33rT9Yf7Tez4J1EvQGLHah5LNz1sd0SUfZftRGOFYYKlU8ocGdBRDdDti+qXtUUy1Ty9U5KseTYwqNDKPQn/FGC/xh5dcaJd9XYt+3Qf6qWDmS0DUzhxqMM2JgwsULJRKSsIGQNIxQ9DqXOCWYMySLjGoio0hkdPQ+37jR+/zjHhA/6D42YGJ7XImd4RKRXtnDv5E9SvTi30C6zd+MILNIJakiNaSaPEOaiCJupFKV+ZEfJ9JElo2ycS7NZalKESrCA+lAlq+UolI8ko5kpXyEZCoT0AQ8kU5kZUoFqsCP0kfZI3ymVK7MQ7/ClbSSzeOLpOVoOa6jdayO10gb0AbcQDbRZ9mzvEHayV+U9inHlAtKtzJkMoLoqLgQZ9z2Fn4IP/SW9eBVVh4aR/dca7Rj/nj3RYhRJfKhAJpjZsIa1RplBffvwrzVgV+Lb/W2OFYlBfxE8StoNPG6hycBQq50thvekghGOjyX4XHlMvwg38wdmjwnuTH598ldyXwoGoqHkqH+oQHeV85T8tS+2mw0G88ms/2zA+rkx/Fk7E9LwYUFxf39riiWCguQDLhKl2RWFTrgeO/VWSemTf/9z60r1gmcG/oMyy1k+4pNrS7y0KSjJ/r129u7Lx6ANUDYHdZf2hsO7t0i8n4Y8v4w7CkGFZsJVEXUhaVal9HiaNMwUdBYp6ropT7YBhQqZHNwx5X2TsMbV5J/sNz/gZ/AugBP/bJhFX4bWENgjbHs4ZbFi+v3tLYOe2XeG8dJU/hBsmXrlqNN4VpWvnfGw9/CfftDQP/Kt8B9B5gJLq646S5k4DalVtMVFYhH8Xhd4r6D2+GroMRG0pXB7Z0FosAOvOzH4s7AEIYvdhD2Z6RnFxkZRYUGXoArreWj5x45cnZbbS3fYr25JtxYN3bT1j+S8jV4CELX9wy1E4P6/XjPDf98z509ez5QHrnvzTs2/p8dS77wFrFluO/s7ov0BMQ6B10yBzsdxKXfG0yB3cravcFgyjBNTwkC8mtwHfPV+OviWw3WmtVirOqVounBgIzuCSguWfGlD+/lCbUDa3YAikpKosjyWH+77PnbZbFKu9pc3xhxJbL9PDH9AMqBdZu/TNKS9CTHrQCuvnpfxyB1kDZIH+TQU1EqziS9tF5675g8X56/d2yvlF7B3NTctMycGq1Gr3HUOL0icoRImqRTB3VSF3VTD02giTRAk1iympOXOzR3Sm5VbnXu07mNuV258VBOj2O/DVC/LzaIU7DfJ0GicopsHBf1y87Dt+KifsUQPrpy7M5JdXXT1g9t3/7dnye99YuK41OXrpqx29z97CfvVxxkQ/f26jVunDkyzdV7Y93mQxkZR4uKJt49uizLnVm/dMuelOt5lZMhvulokpktedV4N5KSZb+jNjmVtgTaEjwyMtyKIpUZirssKV5JLM0QSQ6FQp12heYNBnjbGBNhNGPyM8sy52Q+ndkIj9czL2R2Z6qQfTvf/psx8A/wzx1+bOnLR1ufmLdmR+sTC1bvaG0dum/hot20bvH8v30moPHCZgENsmXbc6//1i6KR6YtjuzhBq+nv4oaCFZQKfNEWmW+6fRwk5fxcj6Hd3EpQuZA5JLvh07BT5XAT7fA/jWUhdrMnISgHqe60K44qdVlpNYEDye1ZgCc4hwojsYLjAep4hueDe9++kxnQYHdMPPaO66EAE3HgaeMEqNE8NRj+cn5KfnB/NT8tPz0oTlmspliBs1UM81ML0suSykLlqWWpZWll+XMyVmeXJtSG6xNrU1bnv50TmNOV05Kz3/t+U89/6E8pTxYnlqeNidlTnBO6py06pTqYHVqdVr8ZIixDRkAyW24P5Q1EB7UNwAlrcgOtVxkh5kcvbBnyeyNrS0tQ9tW7DkVvobJiw3lh8bNODrpf7pIYUXltLnnDuaOCS9prpj6xrYjx7xVK2+9tTknJxTFCh0FsTJQvumTdECGTmtdLWqbrEkKUkq9osbsHgr8fea0IOyDZTFbYwTjRTB9I99xdFRwZN/NL7a2Djy8PObWJHrQa5w6Gj4Aea2Yzvn13jEJ8upBSYLxEluRy9fKlVWuFtxA44DvyF2GVx+ebDeMAnHjTkG1nvbL+YfKU6pTGlOoYJ7CaDiIzf+x2I5SJCp0W0vLwP2LT3Wj7lOL94dPvLh27c6da9e+SA+Rh37o3PnwVHwnVuBx51TLf+rSpVNwQRzyEOLNsK5MNMKMyUayyhVHWrwzRTEcaR7fmCzBwAWCgz2D4akdtI5pqE5jl5ck1qL4BinobdPdeYO/KCiwBl8u8FwuKMgXdCwlY0HOGYa4gJghezZNy+IfRCp5877pP8V51h9aLbl13769R/bum56TjX/Ye0TybSybOX1NKI/+QVxrxr62e2OvXjOnwyusF+JIL0HeEtBQMwBcuYK5apwrNMGVcQDuRNnrRCN8wxM9oY6Czh5qvCKoEZSQO+AJVAeeDjQGuGioPdzU01XTIwotll4a+3zZK8ePv1L2/Nifbp8ctj7Ct2Bp/DZWtKdPn4vvvXexT5/mzEwgAhf24oEZ1/M7D9alozg0yoyRWr2o1dHiXRWvet13U69/eLyd2eiKYDEZQxMqUaVUJVcpVWqVVqVXOqqcVa4qd5Wnyqj0NiZ0JRg3VQLkOKdArC+ySjJ3/Z7d9ev27FnXhb3W5a7/tr7FBr1w6d13L335zomvNlvvWJ3WNyAESqDf+/AAm1sg1+R7u+9NNJO4BzuUXRKuBekstWkkRraT73TrY6D1RYWdHhF2Lvt7oensdtzutamioyAEOymAv+TjQ6a/zN/op5N/lPxI4gvJ9z25Fom+Kb8ityJ21gQ2yY5dL4hdRoIjWfXWxMS2umlrdkZLTpva6j6SmJydgBTHXZLXmzo8VxRntEzaOyKFYp0VqqoEqqV3de/G3qJaIrxshy/OQ9Kut57bcLSEvKJ4iwrptu3167dvX1+/vcWyrk7dc/fdW+753cGSA4vfD4XeX3ygpIXc9s758++cOH/+a+sz66vklFf69j7y+gPTp+GBmGKGB06b3iziuw88SaXtSfqbbkl4EqeMqFdCMRp4ktH7YkQYNRHGqBPSRHgBp9e9CpaI3+eNy8gmRf28/UllzdJly8GwrG+QvF9YQy5dsgZ9/jU+/skF3N4J93sXJHkQPJcDvW72o4asyEKzK+KFElVTsaFp6jBNJlSh6GVF56oilLsmJbEhWhJiTuFfOg1bptttL+5fSPUDc1xCP0ygsltxq0TzE58co2WTbDlVztZStX5ykfYoWUwq5YVaNVkqL9WeJrEM6zQGB2gG7ktzlF5qPzyYTlAmqjOUWep8ZaG6BK+m9fg56hO6O03FAjA4A8TVu1BtT+EqfMvbVtUpq6qdnw0p9PurfXgwhBi6+qmN5UGg4RaCX9HxHWYpNyRZYgZlsnjhDBNMDUKwbsBvaoaqYfGiaxAh1YD4QEwYZgp4GRL9DqyHI2JnRGoeGL3PI54M28xIPe5GfG8bmzPt0aB1FvzzkP0zt/OsxpiWyPxatnYb+4k2nt0n369VaPPxIjZf/pW2mi3VNrKtrEFeqz2t7cC72Mtsu/xbrVFL0ijjXNX0ROrnfjVRz6XZPEvtrac6B+IS2p/3k4vVEj3fOZKW8uHqKN10ThSuiEyk9/EJ0kR5gjJBnaiXOWc7n8RVzufwenk3bpL3OT9wXnB2O/Mg/irJUDF8gf1hD1s/x83nrMPW4XP4FeuJczgX57Ly8IXwG7jFGkFGkVjrcbxG5GBLtxe/hSzEUYLpoFvQMokynIDiJcDVmdMRRPcv9NOMmK4Pm5bcY+2xjmEzglteCLhV0UIzRQbIYiISOAyACjAFYSOTJFYsA0K1CEJLosEuiQabfSMuwGVQF7jMLyYD5BHkLvlRUiFXExk8pAT+UQKfKN2H75dm4EelhdJy/O9SPd4kbdU9NuJEM02z4eYhG9qtrvAsQNq1IPv0ah/26bVgdJ2z7JnGt2YvxQDjKxsSuN+IOwZvPEzhhMKaVYljJikYVqwLRQn4+Dt4sJtgYa9coWLla30EM6IqsaQX76X0J8W8n3IXKeV3KOPJI2Q+WcCXkRV8jbKePKdcIn6JqlyVAjRB5hrV5Hjai/eResvFrJgXS0VyvuN2arLh3JRM2XRMo+VsJn9EXsDnOFbSlfw30hp5jWMTfV56Xj5Efye/Td+W/0Q/kr+kX7Ev+X9J39Hv+Q9S38mPg24HYYlFSYrwnCRbMAsHaKL1v+HCk/xsuI4sCI8IXSQfhH8S0ay3AX+L2YEbrzTvkBWiGsgtyg0ht8twI7fTcDiReHE5NV1zGLquDXPqqgfpvJYeceltHpfToakSRYqbuXVPTyEqdvnpN5Wf3YPaI9Xn6SgQUx5bo/7TEoRX/k1cgai9LglxRVKpM1aLc3qcGc4i50jtZ9pY5yR1kjZLq3VWO9c5vRqCRejcobt0dxz2Ew/z8DjNp/scia5Edw7KBJeUylJ5LrBZlpapZzpynL1dvd2pRn9UhItIPsvnA7RivdgxwFniKnHnG7cjE5vEhKyYkawow9Th2l3Oka6RbtMYh+7Gd5PxtIyVQZ2Ohzq9T71PG6+Pd0x0TXSXGRW4gszUHnU96i43KpUnXU+669C/q8v15Y46Z52rzr1RrdfrHZtcm9xNepNjt2u3e5/xgXHB6DZmAMK5C/fBRdDuhmJR14Vk3dj1i9f9Ysy4wjRrUGTAMfOdRZtG1IxjY0Pr6S+QrWMOg45pAo2gR3QqbXW41dZ4/yp3S6AhAXm9d8U7JDBOQqcWROxxpP0e/5FOvanz2n4JJAsR1s8Pmpl+Dsr0RXGFfzNwf+Vp1N19unL/wNZWkheVpeSeh6dabdb38Gib+vBOWI2tXdgo+M4vemtcKVaY5lAUD/O6xsQKjWpLVAvWY4KC2aUykDWG2uYkQppaYGZAltpy9O/FCfAZarVevaFPhJnilT9SKALj94Nf+BgwrqLnzUTFIJTYDXeYsgu10V0cyhkxLGmizesAXUekc0R6vd337S4CUtqIzjI6b4A20h+GcRJLssldZKTMdcWtx9OA0kdJ1YtpiZKvCxwNt3F0h3IfnahM0ctxOamAGi/n05QqvVp/WQ/YvOYX+yvCaY/TWeEx5GDoKXIwPIOV7wx9vG4nzeqZf2yGWGrgEnP/Na+1oYYeYgMX+mNi6/iXxOZxCGKbwogGrJZDcnkfZQKpII8oc4HNlpI6/htlHdnAG5TfEq9gM6IDk/WiOUxwWR/grZm03FFHl7M6vhoYaxNtkJvpi/yQ/Lb8kfwd7aLfsS6WKFhKkBQAW0iGw60k6+vwXvLzrvCJVskXehRfDF8J7yEZ4b8ApvcCpu+3Z1w+NMhMujHxWaXhNl+LA7ywTx9LYJN+IdJLIr4P6KVn1DXbf0yMumKgY0TE+HUflo33isHPSy0td+yf98Y7+AN8mOwIT9269WgTqbzWuKdiehfdKWK+QeCXd0FVbQJnnhig8UkgVJAdbc8Lxnpno+8ZhhoJ8mgEa0lxHiolCxnuBzDFCi3isxFFI/qj89ixyMRCjKhughKPzHuwWTCeTeAT5EVsEZ8fqE2QGWIJLJEFeNKv0HxpXuLcwK+SlqKahKWJSwNLk3ainQEDwJMlkFOM+g/BNxtt5vdBd0a4jrwRGjMXry6c+tMXa6Z8+OSiM/d/iX3DH0iwrjQ3Ny/Azwz8ZcPIBRuG3XH6JwVfvvng9jnJ1tc2p9RC/NfA3oU3ygBv1OhFjY5nhDdKcqfQJH/g77wRjmpzL7DGj0zPys3PPw9fzz9/DavWd9euWd9hlZdZ71mn4XoPF8KjHy5stOZaNVatBUvFC/EivBpFejlbCb1cR7eafqmekXq0RKlnL2kcqzKFxu2I4LtdBLXTXsaBoBOgHCPYInq9S/eFE8mJcAn5PjSEn222SpvDF5sjvAk9sAkwJvz9EDPQ4+9bXKvwEdqWDN7+Ltvl38Scno6OHotvqhHu/CSF4clZ1ycLUdr8EZ3ObW29wZpkQA+X7gzvlbTmm3gTf91j8u31eUDLzIT9E6j6N83bkQF8Fa12sAlUQwZBFCoRQCmJH6oG1RTxD8MQlesxXQK1qoC6BgOBVK7pnjOR8f7gjjOdNzXgKBXwf1DCwAypNjMMc2M3cQsjAZw6H81Bq5AqY4WAtmGxOIFMwPeTMscjeCZ5Es8ni+kTbIH8pFKLV5Bqx7NkI93A4oRgBW1SiDNoGs0gbdZlkmVVfk5K/rgiPGXFWe4KJ9C9V/vgKmuJzd0fw9Ne0KkUGa+iZURI1OszNdCnGR9/+KFlQWRu9JgEdI9pBEpRnBLr9jFFobGaNCbxxizEGiw6jVehu5Cn1hV/NHa/q0FFbRyLdnNZ9BvRcUy9O9AYeDpQHfDYA4d/HIdAM8KwADYqMgV56ZVW4ZR/aG0VJzM9849XXxaGGR/4KopjvA7ySNGtr6KXiZCcTPCE5/o5TGRf2HTmR4eFa/hWLtmzwndPgn672ke8zwTwjkXQzxz4a3MkHy+Bv1DZeE2l40GikfGYgEiTRIfj0BWiltIBv20g5BimQXsAtfa6rjh0TVUkLmChy8jZo9wMwVhe8RQjnvTIoZBYHRa9cfQ+Z9Rj9ZwVne7xU//SUCk3I0tQXLfol7E8XSvSRpKRvFQztQfIA3y8VqY9Rh7jFdpCUkUW8ipeSzaSZ/l6rY208ffJCfoBT+ZEpRLTuaboKrw4/CSBxrJEHlACqk/3O7JQFs4gOTSNZfF0KV3OUnLUTC1Nz3CUUFDbSokj31VKRtBSZrJhUWV3p3qndqduukyXOJOaQMrY3fwe6R65TLlXHQeqbjp6GM8gs+gMNovPkmbJj6lT9Uccs13z0Dy8kDxFn2RP8UVSlbRIrgLAL1Sr1Eptvv6Uo1Y4AFcDasDryTq6mT3Hn5WelTcqZt4Gx1bXDrQDN5Emupvt5rukXfJupcnxsut3ZD89wl7jLerrrnbyFj3NTvKF9vlWAIsvnKHjjAktX3x+7ovPW6yPz/33X8+x8tAGOktcgLwNoVlQD0uAt2uBt+NRJrrfzJCDCbgGJTRq21kjqosNNnqeiV2VJSclpcWkoPT0JGcgC6oKKLyHyb8QZxKRs67Y9oQ3E48FjiUdS34zpT0oN3vbvF956WQ8ub89k/HG2PO3on6oMHJOCqzXM9gE4vt0zObR73zoHnjgF59Y17DnM0yxYe23Ph+zGQ9ZsXXrCriCLZnZ2Im9Ex7E7q+/wLF2E9hqPZBCGg5ve+G1117YdljwoOgDq6F+FFADA814XO9B9eoSr0dTCEM8wTnUQEkqsw9/ekYj9gm1qbv9Qf9Q/xT/y367lqNz16w00R9ZHyhuvM5avWnTamsAfucaxlb3Neskzwt/sLa2Zu2Oix//5bPwzmgfEp6SoyzTIZoQw0l0IGLCM4vK7YBbqflymVxNqxmzR/yi8ZwkfwpNgdo92wzvIfrpNshLDvp19ByJpEQPksiNgySM/C/41sfXG6werc965sY5UnogwXWLnOBL7+U53w72+uZzpA5ofP972XPc+PE5kqfnIMmdCxx+KJibl/uzXDr57493WNo/Hu9kigOREXNPT9n+yoIdiz77k/UX69Ksb6srO594qa12U+VnJ3Hc3x79D970dv/i6vnTZwQT+pw7dO6T/LzfDy9d8evHFgfjbzm2+3hHtuCsA90XeS7EzkCmGasQQ0e83rVKRUu8SpI2AKjwdu8NKhSs0hnqvO4TS+wxZTBmTczWGCrCel3JAdoAcwdO7X3rzb2nrAvWF9bn1gV+NjSv68MPu+jK0IPWeesj3BtnRvHDx8EaYqDP7zeLoCdS4EnKKPAko8MkhvyU+etVX71zic64RA0VJcW6uJaQwIyhPi3JwWwFEGoX6DJKIqMNATFvifdHVjaq5Q6YKXbbXBSDOeKYQ6OU7fNxH4mlcUwwVRbJpjlStpytZKupKcW4mJTiUjKTz2Pz+IKYFdIKWTBGEOofshQXk0FvxX3sZpQaC9LuOpTp6tsrh7x37vVRK588fxK/g1FoWbjOWltfv5a0xT79a2smrtowLVzHz37059WHyc/Cl2uXLVsuYiI+M3HuJn1X70X1EX2X4C6kCX5PvD3GuUnfRY+v4TknUu72M805b4UxPX9eVM95PBA/aa2wjltvW7V4IR9jtUBevrBa8AiciAN4RJP1gLVFVDhuwtPgsf365zdyYC0JqNhMdL7g2qvVG/gFtJfVxz0jjgcSnCjf50kUKei8/rkNgHz+QXcgGCDRY4Gez2rcOGxPK4jlORWXlnYjqwt7MFp6qWLWN/9mvWQtwjX43ppv+LSzUx6yTlh/ts5ZJx6a8uGIEXgrBhWDt94l1tV9Fer+K8CNjEaZLilS+CboTpMrnjMdoQ6bZ8Ck2oP3I0BPYlCmIAVgbPQfMNGMQWoQebCHBGXxeY456lZVnUyjZywS+zZ8+VT4MkjSq2d5nx6c7rN5zhCKV5AccJ1CPJpguQJBcl5bdRuR2rcd6YHyGPt8O8rBWZG0QMmvu4KLcND61DplDYN9HcAbrJlWmTWV511bgOOhzvviuB1Wg1Vt/dragKI6hQ+y9XZf06fUk5cYWqJJoLT5ABX3yO2Q7bQGi4OE/ANlttoGuhPmSgglIL3/PHkynC5mTpvJw1f7COXdo+Uz7PlhrumNann2ksKxLeS1iJCPbEnIeLd+s4zPeJdOCs8hZeF9J4WCH9EcFh9FwEUiaLauUlGR6ZbRMraEgPrBlCGkCVrRr9OKPYm0P15zGigF6al6mU4nZxWK6YZBMyguOnXqlG+b37Jg5Y9bz+EZEJL/A6kkZ9YAAHicY2BkYGBgCqnauGH9rnh+m68M8hwMIHB+940TDFDw/9e/MHZZNhEgEyLJAAB+LwwfAAB4nGNgZGBgz/0nCyRPM0AAIwMqsAAARDkCnAAAeJxjOcuQxirO8JBZnmEJUzcDA5sxQzGTJcNBlj0MtixvGApZhRh2MSszmINoFm2GfPbTDLvA8s8Zqpm9GHaxigDVNDPos6QxFLI8ZShkusigDxIDmreB7TnDSaA51kBz57H+YTjJag/m2wLld7FyAfUYM0SwLAKyhRjWAd0wDYjbWfmA6kDylQwCQH23QeqYYhhOsnUzhAHlG1kuA80oBatpZ73NsIm1Hyjnw1DMOo2hmOXx/19smkA+C1DNLIaTzKaMpgAktjcQAAAAAAAAIgBaAIYAhgDaAQIBlAH+AjoCeAK0A2QDxgPkBHoEsgT+BVYFogX0BkAGpAbcB1oIHAg4CIwJIAoGClIKkgr4C3ALsgwwDHIMogzyDXANhA3WDfoPDA92D7YP2BBUEJYRIBFmEbIR6hIqElgSghK0AAAAAQAAADgAKQACAAAAAAACABAAmQAIAAAEFQIWAAgABHichY/NasJAFIVPNBHaQqGbbpu6N41CtwUliIhKqpL9YH6MmBnJz8J136fv0Gfp2nfoSTPtxkUmJPPNd08ucwHc4xMGmvXEt2EDDzw13IEFV3MXz3jVbDITaLZwh0Rzjz5n0jBveHrDh2YDfXxp7uAW35q7mOCi2UTfeNFs4dF419yjT1bK3qnTOU+TfWmnMlZ5JspUSTtWlQydybheAy86iKDaCFmsVSbk3I9CcbR9bzqabZcL+yp1JYIoL+quQ8e9qmEFBRs7fk84c8yUY+9R0qWQiOlzZBA0KVnS164ihXA46Pj/GcBDhAOzAesb7hIF1kxnvzyHz3pIPrKLz/QUI8ywxRILmvZe7YmALuf+d9ch7+i2//cD/TZhMQAAAHicY2BmAIP/dQxRDFgAACsZAdsAeJzVkvlTlWUUx4UPp4S78N7LBSWQonoVIUBvCYagl2tFQFqGptbQtLxt1rTvdo00UHEBU19L1EzbFNsTsNu+OFPa5jbti2J72b68zRx6/oJ+bTq/fc/5nHnO9ztPX2pLbOBvxYvwl82fUf5w+T3Ib8qvyi82Pwf5yeVHm0PttXJI+cHle5fvPL71+Eb5uoqv4nypfBHlYH+THHTpN2B/Ewf2l8sBj/3lfK58pnwa5ZMIH7t8pHwY5oME7yd5T9ln8H0J9u6pk70J9tSxe1ee7FZ25fGu8o7ytvKW8qbLzh0FslPZUcAbUV5XtreGZHs+r+XwqvKK8rLykvKi8oLyvPKc8qySVJ4Jsa3Nlm1KX29S+pTenmbpTdLbktaz1Zae5tgAPbG0rTZPK0+5PKk8oTyuPKY86vBIkC3dtmxx6N4clm6bzWE2maM3eTysPKQ8qDwQ5n5l44agbIyyIch9DusNst7lXmXdWr+sU9b6WdOVK2sculZb0pXLaot7MrhbWeUGZJXiBlhplla6rFgelBVFLA9yl8eyzqQsUzo7mqUzSWdLWsdSWzqa6YilLbVZoixeVCaLlUVltBub7bUsXOCThREW+JhvGvMd2kxSbTatIe5U5s0NyTxlbog7lBbldiU2MCeRkDlKIsFtDrOnZstsm1uVW5Sbg9zk58YMblCu97jO41qPazyuVq5SrlSuKORyZVYoLrOauEy5NMElRlysXKQ4yoXKBcr5VZznca6fZuUc5Wxl5owMmekxI4PpObkyPcpZyjTz8rQ4U7NpSrGkaShnRpjSkCVTlDN8nK5MnmTJZGWSxWlKo5k0Kg31ljRkUT8sIPUWpwaoU05xOdnlJGViaqlM9IgnqW0kpkxQxteEZXyEmupMqQlTPS4g1bGBTMYFqFJOVMZWRmSsR2WFJZURKsb4pMJijI8TCjg+QHS0T6LKaB+jyn0yKkC5j7LSdCmzKE3nuCglxbaUOBSPDEuxzcgwRSNsKaplhM1w2yfDM7F9HKscoxydSaHxWRjmKIcjPQqMhQKHYQHyTYL5Sp7HEXFyjchVhjoMMUkNUXLMUk4u2UpEyVLCBggrIeM1FMdKkOkQVAL+HAkofkP7c/ApGRbpymCDDVYOj3CYQ5oZppkfkI3poqQanVpKisUgJaUvxWldklLyf6hB//UB/1rD/gERC48YAA==) format("woff"); } 1) Given the similarities and diferences oF three contending theories (Marxism, Neoclassical and Keynesianism) brie±y analyze the key Factors that contributed the decline oF economic systems under Marxism in late 20th century in the countries oF Eastern Europe and East Asia. Give speci²c examples 2) In understanding the process oF rapid transFormation oF economic systems in many nations in the world From the beginning oF 1990s, explain why Freedom to choose the right theoretical Foundations still do matter to develop an appropriate economic system For economic growth and better income distribution oF a society. PLEASE USE PROPER CITATIONS AND THEIR CORRESPONDING RE³ERENCES!! var isIE = false; var f1 = [['t1_1',1769],['t2_1',1951],['t3_1',1915],['t4_1',1829],['t5_1',1332],['t7_1',1630],['t8_1',1669],['t9_1',1792],['ta_1',1893],['tb_1',1696],['tc_1',700],['td_1',1812]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
1) Given the similarities and differences of three contending theories (Marxism, Neoclassical and Keynesianism) briefly analyze the key factors that...