Q1 Critically and briefly discuss the existing economic systems of the United States and its distinctive features from the economic systems of the
Q Critically and briefly discuss the existing economic systems of the United States and its distinctive features from
Q Critically and briefly discuss the existing economic systems of the United States
discuss the existing economic systems of the United States and its distinctive features from the economic systems of the
Q Critically and briefly discuss the existing economic systems of the
United States and its distinctive features from the economic systems of the
Q Critically and briefly discuss the existing economic systems
Q Critically and briefly
Q1. Critically and briefly discuss the existing economic systems of the United States and its distinctive features from the economic systems of the

Category:
Words:
Amount: $25.31
Writer: 0

Paper instructions

hi, i have 2 two questions in the attached below. thank you ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:84px;} #t2_1{left:76px;top:101px;} #t3_1{left:76px;top:118px;} #t4_1{left:76px;top:144px;} #t5_1{left:76px;top:161px;} #t6_1{left:76px;top:178px;} #t7_1{left:76px;top:194px;} #t8_1{left:76px;top:211px;} #t9_1{left:76px;top:228px;} #ta_1{left:76px;top:245px;} #tb_1{left:76px;top:298px;} #tc_1{left:76px;top:315px;} .s1_1{ FONT-SIZE: 58px; FONT-FAMILY: BAAAAA-LiberationSerif1; color: rgb(51,51,51); } .s2_1{ FONT-SIZE: 58px; FONT-FAMILY: CAAAAA-DejaVuSans1; color: rgb(51,51,51); } @font-face { font-family: CAAAAA-DejaVuSans1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAABFYAA0AAAAAGFAAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgErEQYmNtYXAAAAFcAAAAnQAAAgJcrmEdY3Z0IAAAAfwAAAGVAAAB/gBpHTlmcGdtAAADlAAAAIAAAACrcTR2amdseWYAAAQUAAAHrQAACbQmk5NJaGVhZAAAC8QAAAAyAAAANjTBdsVoaGVhAAAL+AAAABsAAAAkB28EfWhtdHgAAAwUAAAATAAAAExe8gtIbG9jYQAADGAAAAAoAAAAKBcyGchtYXhwAAAMiAAAACAAAAAgBEsC3W5hbWUAAAyoAAABHQAAAjfkc4SbcG9zdAAADcgAAAATAAAAIP+BAFpwcmVwAAAN3AAAA3sAAAVoOwfxAHicY2BmYGCcwMDKwMBkxWTFwIBOM8IBAzbgACJYu0Akey7jY0wFANXXBDMAeJzNjU0KwjAQRl/bNGmT/qRdiogeRVwJIiJ4Dw/iebyA11LiJN0oLtyJ3zAk82bmG6BgyjkZUXep4u+C4iyvl4j9FWu27DhwCo8QhCyFbITsOU4k3CSvySV6+LQNMxaJaUYsnfQG4T2OllrmKkoazM/vkWmZyvJCldpUtXVN2/V+GHmVfi8/pbBdMfjeQU5bi33ZmC87f6Qnqt4jawAAAHicJVAtSENRFP7OPee9BwYRWRWDSWQYhsiwGsRgGMNkGIYXLEOGiAxZkCEGeUEQGSIiMmTBIAtDLCIi8nhpLIhBDCKCiEEWxe9NDvdy73fv+X6OzKCDmHWLFo6lyVsIYJ3IqbtCHRtE7iSWPZcl1sQ3uvy5i1hbBllEjijw5Dn8SBFtcuQlI/nAN9iSta1gHXu3BLNWscRKVpGcnnnLXpMrr/duFI8YR0deUMG1fmhOb2zehvGiibbwRhUjf4wI56jSS0bKqLmqKxB58BI0WGW+J3IiXbq7lh30cKTmFnAiPeaK0ceOFl0N0JwL6f+BXAn7G6gYvJ4M4ddNEaN7aq0O9jHNer1BfaNG5SLO/Y6fCSaokk6sKXfy6R/gFF1d0XV9lrpN2IUtIPqfgJYQkbuR9vihbDF7WtWU3W1aSVr4sFKwSu77NBE1267ARCFuuDb9EWaak7ru0Wn6OoYkWLRp9pMh2GZqoKwzWOOpiktcIauHiMg0yOvPen12HtsrM0ey7/pIdB6TCO2Ls0YGOPwDrOeDPgAAAHic287OxsrCzMTIoKMgsIFJ1TNlg0NghMKJSEVdHTSuggC7wgaGgA28lQo7/v8PiGCRZo3cwCqzgVmVYwOLqvJDXJIPdXW8AyIUNvx1dYGa6prgAhQLjgAyQTygMFDc1QUsB7J0A6sqEHkmbFBIzlDoEuhStuoSSLXSBQCqLzJgeJxNlg9MlOcdx3+/532e988d3L3v3b3AAb3juB6U0coVBMGZ+koyyuqSkug2XIc4N5m6rHMa/zcKdRVaNJ3al6ltxjTWNC6iY4vrFpc1LdUCXbdVrtaNrlNRs+SgZmFLA3cPe947cL279+49Lvk9vz+f3/cLEOjgfbSDnQEJFCi0cugsyLOosv2EQtXQWPJx0MeSY8m434gYsYgR6aCQ2iYVpe7wPsXz+b+3yhVAYBiAHmYJUMEPS60CtHWwtS6f7lJFFBbMXW5AsUYDeipZnUoa+Q2PQ9W0E9Rye82wudxsNy+YDNvQqKmuq11cFo1FqqkZoJVoRPEYP3zy5GFej+/NIvK5WT7CqtJ/Ptp98OjZ23//5Fb6DcDM+ZvF+QxiVg6xoYtisbQUqCxOFBVUTYijtLjSonRKnZRim7/GiJiR4RFyPdXOEjOJc/MxekUMNyyyTNmmThjVpuddDDVFKgaa46Q/NjQk4iWT00l9Kj4YzkURTIQy5q9h6WK6kFxNN5DPU0+wxDnedC59+xyA6JEOwDaK+ARc8La1AgwEyigxGKNouCQXGAQkyaUYjMrOHzVDcqnOD40gKTZKXRrTVEWmEkHQmMutjw1lGrlsYizpa4ivXNWq6GxSEa+FDzV7q2fv15QOluSIdK1GL3qJV/GqXmiFHbAFDoGmoEpkSaN5GCTfwFbSkvN93Eh24Q7ynLSV7lR2qd3YQzpzjpMTUh/Nb4M2DSNYg1EpIkXJZT5FYnzvHdLwYU+6vSfBPOmgNDBTift5l6gdoXvuNj3N7kM57LOW5eYQj5uEwiFVI4qLhMOhRpc7FKYmgnkq8EqBbVAbXokdMQ49EnK5w0UKlBYFPY8pwUDpI/r4UDKVnDB8DeIh0JyYnhCD+O+UfkVQle2BZ1Lczn+Imr0VouZL4YqqiqcrpDY0F2G0VDYDeWEMoUAsUlpWXhvCLHdVuAhrFz9cU51Hm7e93/76r3ee3XPrOv+E39v8Wefe5Nbzl7tP7r01gvn/2fQ3dubdJXWdO767IRysvHHpxj/jVX/5SlPPvmefCxc89tYvr0yUOXUPzt1mFWLmBlhWnkoMNzDbc0iDLp9a7KrHYljh01MrL+qrW38HMPdW/RpRnFNV9XTScCqM46Ww/2V/v19ykA3kOWkaNYYOkRIwBkcH3nl7YJR/yu/yO/xTlkhtv3/t2n2pN/VtPs4/wi/hw5DdTbZa5OCHYviVVSsYklyyIVGJGZRKjTIFU6KmrQXs3C43ZbJkaFCc52GuYJAaywOu4hz6UGZxh5zNNTJ9r1rmrK+vwXk+IE9c2ZZboQxme/zIgCETYCnUBBMDJE/KpzGIYYyUSeVymVKmlmkloTqsI03YRDay7XQ72+nvkXuU4/JxJSwwE1PK90elRehogREpyTMD8gOZkA6v2PvEn2788aneXeMj+B5C6kD6RX7Uto+Sy3k/3cc34v6+9ekXWeKjjw//njydnuo+cOAFpyfbxFxuCB7dkA9Ryy/bPrBzjvgOFWhBb40UNPUCUXF2FJlFx1IQTa+pdt7LS2B+ADpI5eM8jdL4uKNM47gUd/EefoW/y7txN/saf1PM5S5/E5uxEIuw+Qx/hv+c9/Nn8AyuF8/XM7vh5FIucglCnVWYe8oz4LINPAUD1M4XK1CoBHMhHtALnRHMJzSdQT7+G29RuIhglulsUtV1S0zPgy95rLzj3vNzwO+jjvD8vY7Nkz/h5/kePIirDk6y9Yn2tfwq/5jf4FfXtl9rbsZ+FFuP/U9m8hLc4DHBjQSLfgsXiICV0v/DCpaA1VHCOFq5cWaxFraOvcz6meyQGh0eGRG6WilCzM0IXf2XiKPAU5ZHzoqzJfTUYqo+NpGayHhBdRxXXnStbv2DsBBLHK6CKtbBWFK/xvKDFgYddRJWdM3Stmj9mtYmOXoreJDpZ+mp0fSUkNqZBKucz5vViPM02G2FFAMJEkNW5EaFSHBBZTIqpJjWKaIcV2bIRhboZHXDPMp00rkEx2G3w3G8jtQrzeRJZRPpUDqJIqMmm1goN+FX5W9iq7wBN8m75RfwJdnGk3K/WxfU+iOCUUO8RYdF4n1D/H568xBLzIbpzZlKenM2PL+XFzOeaTiO4xim8E2V6C7HMasdwxTikJxXAqfV08n44Do/ZnwyO+JYFkMhccemsRbD/CYf5Y1ijoPYxzfyFv4dVjW7EwuErj2K+Wf5z3gn38f7FubLvpzxu0etgGqT8xS6XLJwOlav4YLdiVfGYsRNfLAl43aiLlGb6L0zZfKPkZF0qZh1+jXyvZlKx/kWmO4VTD8EDVYJsCK0pSJb9Z0yBkzbc0Q9FCJQbCymNQVBtx5ypjCRGnrANh+bEiXHY0akNmLIdIFmmv9Fzuk7/BLxbed3f8FP8+3Yi2uPovKjLalePsUn0Y++H7yRwCNn0/tXfR1P4A/xWTzR3HS9fR3/gP+Vf8g/iC30gEYzrFRYvnnPp+dVhhnDd2UNP9t6x+697i/afXRY+lZ6C2lJXxxxnL75XHqJ0BasdQQmszca1FpeBQ7QLqIqDCUK4HI2yP1A7jPUOf+fpN4XUg/uEneLW2qL1ZhR0WIpKmHt6Oho4LTJuejwj/mruEGk/T8qStCXAAAAeJxjYGRgYGAKqdq4Yf2ueH6brwzyHAwgcH73jRMMUPD/179prDdZPwCZEEkGAJTHDfQAAHicY2BkYGDP/SfLwMDmwwABjAyoQBgAN5MB9wAEzQBmBNMAyQR1AMkFDgDJBXkAEAUUAIcCiwAABdsAsgWPAMkGTABzBZYAcwJcAMkE4//6BfwAyQYpAMkGBADJBjMAcwSaAMkDNQE1AAAAIgBiAIQAtAEyAa4BrgHwAnoCwAMMAzADaAO8A/wEKgR+BKgE2gABAAAAEwAoAAIAAAAAAAIAEACZAAgAAAQVAhYACAAEeJyFj8tOwkAYhU+hJVETEzdureyphcStCUIIIUAqkO4bemEInSG9LFj7Pr6Dz+Lad/DUjm666Eym8833n/6ZAXCLDxioxwNXzQbueKq5Awuu5i4e8azZZMbXbOEGieYefcakYV7x9IJ3zQb6+NTcwTW+NHfxim/NJvrGk2YL98ab5h59slb2Xp0vmUgOhS1krLI0KISSdqxKGTqTcTUG0+gY+OU2kPlGpYFceFEYnGxvOhvNd6ul3Ug1hB9ledV16LiNGtZQsLHn94wLnyn47AMKOgGJmD5DioBGkCV95UpSCAcTjP/nAFNEODLrs77lLpFjw3T6ywt4rIfkE7t4TM8wwhw7rLCkae/VnvDpMu5/dx3yjm77fz8D+WE5AAAAeJxjYGYAg/91DFEMWAAAKxkB2wB4nNWS+VOVZRTHhQ+nhLvw3ssFJZCiehUhQG8JhqCXa0VAWoam1tC0vG3WtO92jTRQcQFTX0vUTNsU2xOw2744U9rmNu2LYnvZvrzNHHr+gn5tOr99z/mcec73O09fakts4G/Fi/CXzZ9R/nD5Pchvyq/KLzY/B/nJ5UebQ+21ckj5weV7l+88vvX4Rvm6iq/ifKl8EeVgf5McdOk3YH8TB/aXywGP/eV8rnymfBrlkwgfu3ykfBjmgwTvJ3lP2WfwfQn27qmTvQn21LF7V57sVnbl8a7yjvK28pbypsvOHQWyU9lRwBtRXle2t4Zkez6v5fCq8orysvKS8qLygvK88pzyrJJUngmxrc2WbUpfb1L6lN6eZulN0tuS1rPVlp7m2AA9sbStNk8rT7k8qTyhPK48pjzq8EiQLd22bHHo3hyWbpvNYTaZozd5PKw8pDyoPBDmfmXjhqBsjLIhyH0O6w2y3uVeZd1av6xT1vpZ05Uraxy6VlvSlctqi3syuFtZ5QZkleIGWGmWVrqsWB6UFUUsD3KXx7LOpCxTOjuapTNJZ0tax1JbOprpiKUttVmiLF5UJouVRWW0G5vttSxc4JOFERb4mG8a8x3aTFJtNq0h7lTmzQ3JPGVuiDuUFuV2JTYwJ5GQOUoiwW0Os6dmy2ybW5VblJuD3OTnxgxuUK73uM7jWo9rPK5WrlKuVK4o5HJlVigus5q4TLk0wSVGXKxcpDjKhcoFyvlVnOdxrp9m5RzlbGXmjAyZ6TEjg+k5uTI9ylnKNPPytDhTs2lKsaRpKGdGmNKQJVOUM3ycrkyeZMlkZZLFaUqjmTQqDfWWNGRRPywg9RanBqhTTnE52eUkZWJqqUz0iCepbSSmTFDG14RlfISa6kypCVM9LiDVsYFMxgWoUk5UxlZGZKxHZYUllREqxvikwmKMjxMKOD5AdLRPospoH6PKfTIqQLmPstJ0KbMoTee4KCXFtpQ4FI8MS7HNyDBFI2wpqmWEzXDbJ8MzsX0cqxyjHJ1JofFZGOYohyM9CoyFAodhAfJNgvlKnscRcXKNyFWGOgwxSQ1RcsxSTi7ZSkTJUsIGCCsh4zUUx0qQ6RBUAv4cCSh+Q/tz8CkZFunKYIMNVg6PcJhDmhmmmR+QjemipBqdWkqKxSAlpS/FaV2SUvJ/qEH/9QH/WsP+ARELjxgA) format("woff"); } @font-face { font-family: BAAAAA-LiberationSerif1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAADqUAA0AAAAAUwgAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgEiAP0WNtYXAAAAFcAAABJQAAAvKvxuMZY3Z0IAAAAoQAAAERAAACFj5CQPpmcGdtAAADmAAABDcAAAcFc9MjsGdseWYAAAfQAAAt/QAAPxjuQYsAaGVhZAAANdAAAAAyAAAANjiYGiNoaGVhAAA2BAAAABoAAAAkByMGAmhtdHgAADYgAAAAlAAAALy3qwrDbG9jYQAANrQAAABgAAAAYFXRaBhtYXhwAAA3FAAAACAAAAAgBKsGxm5hbWUAADc0AAABIQAAAnM4PS2ncG9zdAAAOFgAAAATAAAAIP8kAGRwcmVwAAA4bAAAAiYAAAJ0QJtZwnicY2BmYGCcwMDKwMCkzKTMwIBOM8IBAzbgACJY00AkuyLjbkwFAJ/fAxEAeJzlks1Kw1AQhb+kSZu26U+SNv1J2rRpk/4XdOlGRDfiQkTEtUtxIy59Qx/AN1Bw0VeQ66QG8REED9yZM5fDzBnuBQp8nxBNItpOKmGagcGHXMSMhOkSF6zZcsgxJ5xxwRU33HLPI8/qUynRjpjtNQd7zSnnXHItmjseeMo06k1UunoF9a525FAvOdlPli78xKHkKXNhS45kaoa11AtxFGGyImEg3pcyWaNPSo8KDcrUaeLg06LEmCpdanSkXxEXC4+ACW1s2e+/7IlWzB5YLxhmsWSVK1W7Vm80Hddrtf1Ot9cPwsEwMsbxZJqk6/liudpu5GPoEb8wZYO5ylgyCDO3M3GT9vItMlQa5XrT8VviptqtdcSIa3nBpG3H/AV8AZPfSDUAAAB4nGPtZRBl8GC1ZeBnKACTKIB5DYMkiP7/BpX85/P/FwMVAQeEmsGwjGELQy/DTYZYqIQbQwBDJkMpUAQZHGS4CBQFgQCGKIZVDF04jF3DsAMoD1GXwNDPMBOHugCG6QybGY6j2BLAkMtQDXTLVoabjIYMJxkYGPMZPjFyMDQyHAWa+gko5ovNKCY+IJEGZqYhid5mmM3UzeDF9ATImQmSYdJnEmA4wjCHMQ5ocgnQn71wH9tgGNrOUAskgxkyGMqAbDBgtf1zi4Hz/2egr2oZvBiaGBwZcpB07GGcz8wFjL8QhvnAMD0IFtOHSbJ7MGcxbWNi+jsZyJnIkA7EiYxAvzP1MjsyuLAKMm4BAGVWQ3wAAAB4nHVUTVMbRxCdXQmh8JUVIZSq9uDZjKVASYqcspMAUWCj3VlLUZwgJFfNkhx2QaJETpx8oJIqbqEG57/0OheRk/9A/oMPOYYjvjo9oxUGqqJaSdOvu1/PvO5Zl4fieb+319398Ydn33e+a7eeBtz3mt+6O9vfNL7e2tz46ssvPn9U/6xWXfu0XHrIPnEeFFcK1odLi/NzH+RnczPZjGmQKmdBRKEcQbbMWq2aslmMQHwLiIAiFNyNARrpMHo30sXIo3uR7iTSvYk0LNogjVqVckbhb5/RsbHfFbj+w2chhSu9fqbX2bI2FtFwHMygvDjyKRgR5RC8GEke+ciXzM95zBvO1aokmZvH5TyuYI2dJMbatqEX5hrfSkySX1RlIVPi8QB2u4L7tuOEtWoblpivXcTTlJDzYFZT0mO1dXJBk+pr+XJskYOosjBgg/hnAZkYc2WGS/k7FCqwznxYP/2niCcfQpX5HCqKtbN3U6fzvqQBMyWLUXlN8Djs6t+7SJwiuZJ1TdQyQHmlDBgNZCTj8buzA0YtJpOFBXnCUWGyKzBr/O6vCxuClyFY0cjYSg8b7HXgo+5PAsxSQEcxIvjsMGfDdgrhNGb3/9wEhUA5UFPHUQe/GLvkAA0464qJTcmB/Yq49UoIZqQ8r6eej58rz9nUc5MeMexmpyckZEvtAeOo8UUMZwc4T7+oVjALlt7aDpPLBbpZD3UsxV21B8cUZsooC2bdTsBJUSnS0sbS28nflY0FyoVlusmQRvFwxqP0eTEqIgGtVaFVmbS+L8D1ceHGaY948qiOGXGELTr2dfugzk5ghTVv+qm2xY97QqekabDiAYkO0yyoc19VplxG/mQLiot1xSV5/O5N8oTafz4mT0joq+BVD+eqzKUYHMGDyB7gTTuiwnbADbHBIRPDUA0aKrT+Bss5uiKYXl90eqzT3Rcb6UYmDkWXLfF7NEzYExocOciX8lSYdibEQAsBGuCCNRv4C7OlPH4tFFyjalSbDSoMm0yjcRuwTvnQT+OUfYd0Ro2T15qy5ZSJPF7LdkJn8qlVTXTTtDBm5JWorakrU8I3AWIm0mhIaVlUM08FG7KQjSi4u0KdTcmjVU7F0JqnverfsW6JhTIRB91TQ4kJQcW+LS481faN2brnbk/dVOZZpycVOUsJCe68DUSNsLtRsPXtV/eZBTFeYrzR+j7LxHXVXR6paytZeyBZTzR0NL5BfrNPVa1l0jE6/Watii+zZsKM827iGue9fXFpEULP++KVaZhe1AyTh+gTl5QQV6OmQhWoDKoMxbSHRl7H25cuIWfam9WAtg/HBtFYfooZ5HBsTjBripmIZSeYqzH1wS4VR6gxvr85Haj+/BqOZBSqGSerqAg+BhhsG9Vh24lh5hZgjg2bMM+aCt9R+M4Ezyl8FifDWDVq1VNpcXZdrP0HdvDztwB4nIV7C3gUVZp2fedUdVffq2/Vt3S6O12dS1dCJ+lULoZ0CghJQbg0EAIkhEQEFNCBIOBtnEQBEcGFWZFBUWFcVh1lRgTGkXVnyMyDPuOjCPMPujOjjozL3FYZGYf1d4V0/nOqO4Du7L95ktSpcz/f+S7v951TDGLaGAYt4+YzmDEyE14CJjXxiJHlL9S+ZODen3gEI5JkXsI0m6PZR4wG05WJR4Dmp50xZyLmjLWhaE6CvblbuPlfvtDGnmJIl0xX7hh3kJvBuJlJzHM/nJe4KYESr4z9SV1tdWgDEgwkIJ5IJ+YlcCK+PI7MDdMbkNkGZiNwTuAwWOI3lHlSKXMvUwy+4inMFGiNTlGnIKa32qN6kMMT8aQ82FOh7qyDumEtDjfEuf47Wx5sQS1uR/8dga0BFGCZ1r4L5Ded7gu+3xc8Bam+vguDS/qE3y4hmSmnq6mppnpJ3/gPI/eBpxilazNIqZuA4iV2ZKxzZSBdWwwur4e8+YoxLW3w2nG8ZAJKgR3IExAkkisO3X//oZuTyZvpc0XyFwueufTUY397vifVu3l+rTx90sRio98vcpbKhomhpt4FvU0VrorAY58934Oe2vHR/u7u/R/t2P67J+fPf/J3248Afm7OnOdyo0eGTz25Np6pn1XjA/IzmbNa+XDr8o46hOY+DywhMwPMMYbBWziNMTMZNSlYs1aUta61HrZetLLMN1SBA4ZTuSx3gDvMcTxnHDYbGO527GdaL9S2UpIs6RsMXugbrKlOcN6YknBySiKNbgfXaArcub/C1rpsSFFCbPuNym/18baO/TvcxbxD9rVMDTB7GDMwZsF80YwLD97s2Me5Sfd61+sukI4J6Si5lLoMIW4xgrvc0apAsDLqdkcrg4GqqHtxoDLmdscqA/SFFNJxusY+YX9P+EdmblG9y4vAG06El4ex15/wL/fjhA8kwk1HTTbNRbmqjCQEobRKrYJgbzVZMeJU3qJx3n4z4wSn08yWlkb6GTqvdKo1neoTyPzkvgt9wtu1qZpqWaYMwJVIE0Cpc9VLdJo+d7xsAlAu8Ba4ohXS2I6x4WBu7KXFfS8Bembq3WuWpQyTi9uPD2z40bemTP7m0XWZwRtnBhOTDMlb737As/gHl586Bvz3u0x2lzn33g/klPrtC9/f+7tHpwtFCc/Pc69ZfS5zfh8riNDsxa8xfmb1UdYM6JWxX6kpk0NzR2ANDAEGMHUwdsEetY/Yz9jP2Q28PRLsDyI1CN3uFW7kxn7SZkQVTFYNIb/gyLocJnvW6tV3+gJZsyy8ke6DwXVkXy7UpvpqybL7wBsvo3zu9JHNb3CWKTFfBqfRXvmGIlVtFr+bm3zHHeAy+bJ9fRJ+LfcN3uYyj04OVFUFcDRQtcFdU1lMZF0mc3fpsh5mnlDnMdMt5n3mF8z4Y/NlM9psBnOgw+KRPajT0+vZ57nsYelbs+cFz6uejz0GwaM2tWieCBvxRFDTpQjsigDKRg5EDkdGIuwukkARsrKjVdWa/vSH9Kcq2ASNm+dgg9mwwxPI+sZXegFksp+D/evWEVF/X6ZcOHq2r2+QsCJ8jRXx1WXDPc7iclEsK3Y6i8tEsbzYaf5uLnBgC8jsh9fnklqX54yvn+6bZ+wTVMXexwSYBWoTauSdGmuAF0MwEoLW0OwQMts7cNYz4EEej5HBAo5izGPWmjWpJrtmMlocXuccRqR82Zp+W75QS8UmrTNobV/fuprqPpkrKVWccYVwnzftjTs9Yrq2nqogmDXQf8+9y1v/7d+aqxPTIo6a5smedTejR6rK3nmna3Ro0mSzYZLZ4yjw16yxT/Aswl9lzG1qGW980Ih424M2xJsAAgaAsNtdVsFUQEatGK44UHGm4mIFV0GpHElWaf0VL1ag7vCKMAprd5m3mZHZn/U4hLKSOZyoEz1NpIkIU59MtasuUcySPljSR5RrIq8r8xQXfc6vC1UDnhXU5i5K3v39b9RNufOfl87Zm2mQEyubJt00NV48476bSjqmNPua3GG3ecrw8Q3Dx+9odFtzXz7jDaaWPb6659srGjmT1Uh4UCPrG8Q/ZZJMPfMdNba6FEI+2YfsYkZErqjFoYVdVS5kdYHNCcACfmXsnBo2OTUiWXyRub7D0DjcCP2NoDYCSdR0eMr01ZvtWlnZbA94SktL5GxREVOfnmN2iIasyVuSZQSG8htZfq2zKXXB1ZQiZKCCRhTqunXC+xdqa6mB0ZUL/QeE5bxU1MquEoVthbyxMTggrmTAbbRjr4fuMPxC/Ua2akMu53aktf4b2voa/cX10+b3Vz9sjzUmq5cmShonbX93U3N3Y9HOtptq8U/9N9zUObolULXEUR73JztvnpjpzZSJPLCPJKfWFgW9G07ZvbliFrknZDOHI/6CzhG4hxkTs1Ut5zpkBiwM3NDLrGbuYfYxbIjpZV5l3mRY+vYCQQiWkxawUBFsbdfoUy1qbNZ2WQAxFsGStRywHLaMWAy7SOKiBVsKMqtXtBJZJTRjGC6LC3IKeSGVZUIoQq4luoAmrgnkGip/B6C9nUobh/xVeT4O5NrxF/gQU4IfPM6Exs4d5a1akG6mjSREf6kfIRZ49pWxM+oEi1MjrO3EougLFxfDXGCgM1zsCYeLRZhbFC7q8Iken08EkQ9DcZh2MkY4Ihz2FZsIbVAFo4ZjGiMtklZKd0m4U4KAVCE1SdgiwRcfS5cl9Jj0PekNCW+XoFsCUi6pf/wP7WMJjkvwggR3Sdsk1CutllCLNFNCIUmW0LvSH6TPJfw9CfZJ8LAE90hAu0eiBKTXn1+W4AJt/oaEXsiXbNMHNknwXxKQnn8twZvj/W8stJWlZqlTwgEJ3iV965NC90jbJWSipXtJw/ekjyX0hgTHaKM90jMSniZBvQQeSZKQodCOzGmPukWC9dJmCXVLKySEJPhMgrPSeQm9LL0uoW20ELLSgIRqpckSGm9+i97+iPQzCR2U4B8LXayQoEuCdglcUolUK2FWgkt0qD9I6Jh0UkLP6FU3SzBXWiqtk3Cd1EbpUCohYtqH1exUTXtdgoPSMQmNd0lrIr1eKZ08kLEbP6czBH3wzdJu6aCE10lwdexasil0BgB6p6ZEuaYPLlGunF8c07IS6B2SqZ2RAK2VhqVd0mFpROIc0mwJ8VFrtVW1Yqu1iPFFfUj1ZX0DPsz4BB8y+VrCYAmDqzo8EkZMOBquDuNpYdpziTpF48IwNTyfgJYtYRbEMI4zRcXYl40GHMIcq6GIIWqD/Ppqnb503yA1U0Rb5kFTLTHP5KWfGK1BeVAmluzqzzW4Kg+O//y90q+VLLmWd13+kq/WHpSv5QpvkxkRrdaSkqk92uoX5K3yyfEHP0JsaT/RbKSuLJsgr87KlLRPzAMlIBLsNYb0B96T+3Z08pxbpgbLSkq8qVikQW5vrhaDuccH4Nju3OePwBK86krvnB03NyPOwL054CuduqRJw2uJ4IdG16BHyDMv+ymCdX9HbFicefk4wxNxTZoEjeWBd1DU4xA6LJaPLUi0JA4mgE14EicT5xNs08HEJd33GFH9crUmJ8CTgJEEgRgJWJsYTuwiLghVVZESTa9U5RY1JtgxTMAHYiJCJEoSZyLnIgY+Es3GHUHBEsnaw94Aw3jmctQApJ1pagFqawuY90KtrtkIkWWq1YT3Kd6SdUMABFyN2wCi5upK418FX9BWNLOrS6rvmZRYl1t975z5RZmJimsot2pwEKx4QJCK3cWTV3WO7qE6ES2c12/gLeyo+xoeQcx0Ygf/SHR6kGiwb6rKivKN5WgvDyZ+G4+eYOFhFqxEP7qYeIdPZmToIH+qPCyPyDgqD+gJVtZVuzxBC2mzOeB82aDXnRWZsqxZiDNMdA7W4Yrwhm77dMsv6wr8qsHTfxLEOYo6C2Z/Am6hvEBXmvex6hucFAcY0C8rNy3KDaVXPb0mfbuCEMBT0LY+90UukmgbaJ64KpH8RnrLUHu8AX634dVNU60WC6Gk45K/6svjgSo4tXLXojKfgP7Im94la2fI2o+QtQsEBexUBUsceN7hdyA7JnRDxRRS30C8AkYzRn1RJEQr1UpgKocrUZNQuasSqZUD5GVX5eHKkcpzlcao/jpSyQYtHR8mIUmp4iZGJmnPJsSg2czNCQvOrIfRMUAtJYfuUtTqtFinO5kEB8kUB1E0NO5SOouJR1mvU4P6lNS/FL0FXFqGcompNzb7G+prXclb0w99c3T7NkgBwShV980aOVV36z8PVt800FMKF1ds706wJis/6uP5X7ET/FW5w+4aRfHH5T9/cseJBzSLK+DQ/fAsoUk7kZkIocl6tWqbB/a6weLe7kZiqDSETP6Av8L/mJ/lS7WIxRKpZCohM1x5oPJiJa6kYjFlukafqi85QUuA9iCxlkw2kTBEswHBMMcp6qsnyEfnA8L5BQQoXBhnBLiK9LzjqKeeCkEYgMLAGKELsN7WdX3Fkydngr5JsxZWbfjussq3T3RuWtqU+07jHCUA/+iUNfi1a9oDN7dwvNnQ6AiJNvVb/3LX55+VL3lq41x4ItV9z4wZ93Sn8nqilSz8ee5pJgYvqjaTIWCoMGCecMNonK5kyReXte1xqIu3xZfF8eb42fj5+KU4uzYOHpLVRTJZ+m99/JheYLDEQ3H01sU4nNSrYr0tLccHx9vm69Mkpw9hPnxU05s9ob9a9+7T9sVhfXxzHOkZNdse1l6IA222OY5DcWDjcCkOr8aB9qNnyXFEMlfTCrvjWG+1a/ktWud43Rfir8bR7jjI8V5a0xNHNOfNOKZpuoz1ce6Gy3E4RuaIDsRBitMFr9e7MwhxgtniEI1Xx7Px4fiu+OH4ufjFOC/Eo+R1JM76bbaiDszEhFg0Nhxj+VhRLBvxMsEsDjhcWVO/Hex2EyG07qhQ7dea91xqiWdJBaB/3JIUzI1csDUFKyNTUDx4rYqeQxnGHVcaxl0F77irEAbq9+hK8ndPPy3P2TCtqr2opkooLYpXBs1ffvlmjt2OF9aUTV713dsaLfype8yWyKRl7U90Xfk8VlUVy/NEF/HTfknkQGG+q0rTax+qRd/07vCiG8Tp4t3iQyLLEe8qkcYTgzOC3wzuCLK6A+4z2bRiP7EtCVXwaomEu51piDZAA92NagIeZjf0N7zYgMl0LJYidxWXzMbqSttKUWlpTBCyXJ2lzXLQgqMENVuop0SopZOLEs3V1ASpNJETYsiF314gXoMehmB0kRlXB8Sg6tqCuAiGr5HFQMSKaM+yri1LUr2zbrBV1USWTu5bnmxb0LugLTlh3u1T2+6fmEoGe9Jz5ienLly8cGoS+NaVnRUWh8D9cVNR+Zz5tZMqw8WlE3umqMva4m7rqdt8/mzbhOaK4miFupjSLER0xwcEa4eZveoin8oLmtU00YSs/EQe8Q5Dh8PyqQV5LMRDB2opR4iVZJsYYjGrIypJc2pkILKWuPFsVE8M6z69gek4HICdgf0BNBI4E0ABSkwPUcsBYzBrCjsMeK7DI1qyduon6KyVprxF+GXwQt5PyFtUXb/IkHeHnQXjMu5Y6ca0qXN+452N/wDpO3J/4cPZBQul+oWt8TuhGKzzFjmI1QhUXXk8UDVDKClyFU9e2YlWUBNKfXqCM35P7Eg5c/g4YyPTk8nSKzxNHuT3gIn+ejscAohC8kASmKSQHEmeS7JNB5IXk0g3Ex4CNFJJEJKQTcLa5HByVxInCyBDryBTkBHpGJaAkQQpSuDmGemcZOClRLaciXgFKesu8RZzXGCu+X+GGF8BGFS+CAeBblP+F5TRTiwKKsouWHA90mjN1BOkseyOHVCLP7eXy+W2r8GNJfMWXYMbBYcMGBeh1R8Jj4TgJ2rJRs8eD+JCW0JoVfDu4ONBzAXBF+Vtmkj/bXCD6xXqsdk0Z95js2lm20M2ZLICbyqU8LSkmiRY2gTTfyE3Y7BzxqDR42Zsds7qtYZIym0gaftUN2xxg5vGAHeUVmjTOXiIA8z5SdoLc0mbTqvXY7V6OZhLmnTYOY/dznmnByEY9JB+baRjjiUbjsxMOKzeuExjw54wksJ14bbwsvDm8MHwyfDZ8PmwieZLJJNmHSOZ58OXwuYmmlsXXh/ereca68i/s6SApU7AUeI86s5AncOnZcOAhLAaRu6lVHcaGatgjVoxb3V7g9ieNdhCHtbsExwMZ8TWLDZ7Gd03aE27fE3kWYgKDdYSp4DYWLrt62ThLQrRiSKhf6QwvfV6kA5yP3ErCHtsHRnJ//EjfOE/Qe8y+dHRe58e/GT68q63BfSH6XoAbwR81zdy3ff+Ondf7ge3gZK7uAaev/eHZ+6DubfmvpjsrarywczcS+QpwF74NoXtuc9AIE9v7nnCHsxC4rP/mg0xdUwHswgeVn13TYXumhU1qCZK8JRWs7DmlpoHa9gaSiwTyUF+og5qqQK2E8GTyklWGc2yUd7o5h2UnaxapJHwRrSc1DB2lNROMMRZZr6WKFEDYaKuyb+SREnCv5VQu11Rg2FNUTo1mYFXGdD328T0dvWC2gt1vRDthV46tmvRgDbcC+t7YaAXjvWe7EV6dmhml3agF9heaGV7N/ce7MUHSdnZ3vO9LC0/OknT9KfSkn/KKf2puomFuDoAivZWF/qb4AhqTZlp4Wo/+A3x2hSbxFkt3GhxaBEtpeEDFtAsmmVKNpsUpmTdRQWE1ZSi1uNUrXDB6WuicSaiBPr6qT2V8xxBTWrBh6Pgk2gJYlQu9OktZZlYHF8TRWVy/och2w4ytTWGeElpmZHYmdg1IEqNTcMErDSUjodKfQ0+UgcTZRKjEao8pAPdNKHxeB5e8bOXK+YVtWKtHsS9jyh3jOxYvWdJMlCVkVypZNFTT9Xd+A89RTekS00fxLeXxCraO3K7vfGA3de0dHrPpu6K3NHber2pGfUNM2tEsXoG2vT0MybDJmfx5vWT7r2xOZ6ZWx1rbqgLGkLJhpIj0389+645FQajCa+Rd5XefuVfmlRXqk4JSM1Jf7y1GzXdO9TaN7G4eGJfa2t/a4RiYRoDPUIwgIWg4R3qxM3m3WbEmWE7v49HZh62s/tYZGJhM9qNkAEB4TEmxhAEhIRYdSwbOxdj6Zsaw80xuo/ipOna/hisjYEaGyAw6UCMHYiBXmRPTNBEzeDMmoRQFudBMqQu5JU2FV5i8q87ewIPoWGpDoxF43UEpTTGR9796OyvfvX+u785FmxZNm36QKMoNg5Mn7asJQjvfTrG5P76lyv/9283PrayoWHlYzcufXx1U9Pqx/OYR2YYQ4CsdyJ+Vd3CKnBeuaQgTvEqCQWzdXC+7lId4uq8dYk6bCmDj8sul6ETZafLUBnVupZy+Lj8cjk6UX66HJXTHLYUzpdeKkVcqbc0UYrZBJynrjWX8CYSCWzxwce+yz50wnfah3SlbxHhY/GyiE6Ip0WkWwDjK2M/Vy3mYg0MTkPMgAUq42eIBGMn8JiXOioqGv0dBvceNzK7M+2ZjRlUkQFPBgwZ+OJ8Bv5PBo5lTmbQ0xnYnYH7M7A+A0sz0EUriJlS0oL9LAMnM2cz5zP4SAYOZqA+051ZQTrak+GkDIgZYDNwKQPvZv6QQSczsCfzcgZtzsDGDCzKQF2mLYNKM+DSq/388/xwZzP4GX3ABzKwLgPLMpDNwOQMSBkiG/mqpOZHGTibgdczkKGBJt+LR7S5maUZ1EanQKrqM0R62djBZ7WnM0cy6Pouuwv95We4l87v8ww+mKETwHsysJlW2aj3V5qpzyCUcWUQWcgf8utFL9MquzOIrndjBo8P+Dmd1fkMel0nxh6dXHT6pJtqOpInI2XwLRcLtdaT4ZBK8+lcMOn+vQwczoxk0LLM5szBDM7mZ9mWwcI4Jc/QCcALGdilT7I5szqDovmuUaPe60DmQAaRPVLpVpIlqr27yaLOZy5l2GG6eev1MesyENL7JPs8kiHWMpPNrM0MZw5nOEcGeCbdsbYRmEZobMpOdLj9UkWaa8yWifVePhYrmmsTmNraqnxARvfF6b+0bkKpZzqoA6T+q5Guvxstuz67/+8U/J3wm/zV+Nv1Ff574/HQ2lmC1+h5AYGwNIbGEBRLFPEg/cv/fvVNDxqJvr8L6sT/D8grmjm3S5q6IRztubG/lCLfu3Lzd3TOD06d2up1PpybvH3+/KKWZsX1cK77jjvAnQ8v1TW5yqKerwSZFvFmG1s/6dq7jgIDV4NORM+MfcI9wbUQrfqYKt8CoJimmpDCT+XRDbbpNsQXgQVHFrMGjwFZDTE2Bq11sbYYopryaDKl6RqzMSpp0RiwMU8MXYwBogr1cGyEKF3O22NnOA929CMn7gguCKLgAG8B3sLbnZrFzbQShXqhT4dLRMWSnaMmcfyYXyexrmJ1JENDLvGopPsH9K1w3M9uPQZvHJqw/o3Hc/+Z+7+HkP9Q2fytAyv33FjF/iWoKMErHy7+/gNz//oBrtPf3pu7daCubskDc8jatxGbcombwTQzv1ef9kSkSF0EW9wgQzOgIIC5LliHNqfggQngnaBMQJOSwPo9fsRXuMHsIn6hHawGs2hGjuJIMRKKi609NS1MCzSea7nYgpiWMy2oukUlD1ze4yVK3VvtVb1ZL8t7V5RDVzlsqoSNldBVuawSJSpBrIRtAkwX7haQVagsZ4PG/nqAene8P8hEIBIJsldd9pQOCK7yqg4wU0Lew9L9UeqQM336GV6BqYH+c6cLtyCu90mvP9UzXA1mbZ8Ud7fNW1w5Y+00qeWmb2351k0tE9d/79abjnROilcOZ6evbi9puWloy9BNLU23f39D5s5VPTFY+UO/HHNXaEtv0JZMqprQ2D3UN2toUXXQmfvzwWgy2tApT+puqUw1924a6NuzusnqCdryto4Z+4RliB9ih5Ba3GNeZX7IjHuYVQyazy/n0Xy8HCNsYEVi4I2v5E+NDIUnEKN0lPj41ANRJZIw50+KTGaPyWRGMJc38R0YeTBGCEwmKNYrumxOzWTCZgsTInYWlzACMWYjP9IGNEaADppWneXt2jkBjgknhbMCPiCAnquESzRBiArVAmYFOEgK0bBA+F1YKyAeM7wZ46yVc6gm4EzLTeg/TWACRIMHacLYBS6vHT8bGKQHB7Lw9v8cq78K9XWNZoJ4XhDyAB8/k9s6PXfvALz8KLjA8Cgsxquu3I/v1iPvd6DteuQdCG8z3BEi3wGYpGbXWzZbUBvuwucxbuA7+AU8NgMk/MAbYa4JGXtY7GFZfLfvId/jPuxDmDchE+aRqRgBJuQ08YSOmDRiWQ+LrCylSYPDpbGhgyHYFYKu0LLQ5hBuDgEbgoshOBY6H0L7QlAXaiMl60PsmRDsJnVPhnCItl00sVWL0sqeEGraHQImpIYQioaqyXNtaDh0ODQSOhe6GDJlQwdCZ0iSFc09Wcc5B3J4yeyE/g3iFvH3It5g2mJCoskWcJGpOfqNNhej+9zEBWsicqLTXY/u6hcL6HnuVd0uvEXoS1B5KpWidHa6mKYmYSs3MuKEdB9xynhZoPtQCIcS2tMw+HW6mmgish3ctH25etTy7dwro3/74cjoLw8dQoFD6P4tXIsSzKmjJSEFPfPtXLN+HecpqodGH0R3BpW8/kWfkf3xM8+qRW6irjXGJJgQz7MEVUGMJ1AWIOnvMVB6LbY6NEPQEYwEZweHgjuDXCSYCp4OjgVZB0nsDO4Pvhj8MGiY2BpcEzwR/DTIniClKKjO69YOBGEoCNEg9AeBCRIPTxywRVwpF3K5bG6O6Uc4fxtAv14jvK5TqOCsCr+V84BX/5WvamOWOh+FMJcCjx9C7N6SxmmzZsUmrUxMLna3J3cUNPDPeh9aNqVcEOyXtvuCP2H02HYsNwMfJvg2xlQzu9TlK1N3pZAhDJudu53I4ITNlt0WhImlMACYSjR7rVoLTO1wLWoiiWzt2tpdtWdqL9Zy+QSeXQuyyBZ15KOeZ2jUM1aULQ5NyLrFZNkc1iQwWewYD0pdKEQ8aVSmbzzkry+xoC3dhcs01GjrGrG0rBiH8+51/jDAUDgL2LsaeORtmjy9dOGOpem6W55cmR5M0xs/B3PqHWhZyaQlzdW3lSZXpDffiVcEqhpcYa81c88PN95+fFO7xWKNxIpMOX8q5cezVuzqTTqFUSdveo/KbQ9xvncS21TCDKnzE8XABR4NIN7qKnJNdM1wsdsckGTB40GmNcGSkqDESKqEVGlAOiCdk9i8ia5GKkLI5IvtdAHjEuhWW2/f6gOfAcU2Qv4aGb1M10e4XvdKCS3y8X+CcKgBIVaDEKQClAyn5EGKA+LO8VMP1hjDO6+8ufx7W5dPiW18oLi5PuWKT57xSPf7H8jZ9btfWoaOPLLk0fs2Du/uu/9Bk8NtPgjIFfjRs3N33HfvA9/pJWtEY78zbiO870Gn1SNGB/jscI8NFtpAtsEtHPgRcECkgIO5Fqulx8B5DAbOBnNZzC622jxWq40oeLvD3pNX8ABzBYewmAEPod8DVjBay6wN1jusrGmB42YHqne0O5DR4XOUObDZih0ObMUGRnxDhFdF+J4I+0TYJkKp2C1uFPG74h9EdEw8KaJn9Ox7RFghQpcI7SKYxIBYIeKPRCqRt/76t9pu8aCIHhBhrgiSWCe2iVgUidqHz0Q4L8K7IhwUaVf4LnGbiEgHFSKIYikZ5gHxZZEzifD8n8X/Il6W+s/PaW+K79HU409qZMiVdLxuEZWK9aQmpgMe3fWIpg+c2Lpd84hgEOFzEc6KQHt7XcSLROikuSJpgtfpLVavybdIrVipHRfhfhFgrQjLaKvzItou7hNfEPFaurplIlJF8Ih0FfpoauWUdm27CKqYFRFLclHTJUqvN+mbR9wtYo+4Xl/cWZHTGygenxYSZbFTxAasxsu1FG7FszEOYbBhwKrVr1WQp81mtwsWxtDv4rHDatUDOKRy4cDeYwVEf3Vv3O7X6qxtVmJtCDu4qS0l1lTWgyfjkdXaVDqV1lG9TNhYHiygdXkcwhOtrwfM8sBe1ivI+XONr8B8+etehfA6sQwtumnQtd/XjtK/bqz7r7Yntvo6c50uhOQ8uelK7mBun5Jr24CY16AVVlbBYqj+Bfwr+5cv/4afuLKMs+kaczZ++soS/BJJU11QxjAswz1MbPgCVdhkfMSIZjv6HWg2088gV+EqpR6VfYwkbOUEWjdbO629Vtxs6bT0WnDIBMuM6427jVg1Zo2INdYZ0TIERiNvt9scBoedCJWtgzd6eN5oNxoFeNFwwnDagA0G2xoeBD7KV5Nt4oHniV0eCKED1FJHSTqr22dDi0AsNRKI2c6S4jPEYBsYklwb2qVb8DMhI7X2Rxf1afpz5vz8U2nSn6pbrtEcjNAx4AXGK3ijXsx79WNsl1fzitkAw9sE7M06GLuRJfjca4C8Lr8aYdVPb/XQeq2s3x/Mm61TdH/pfQyCApw0wEpM+dUY6rgrKMuMvl+Frcqr+Ot9sYVw31KYsSF3CRauyA1153L3LMsN3bEdauA12B+qqvLl/jL6Fx9xqODRrbnPvhJfbyA6vIvgWh9zVnWzXo9X8mKLKWSSTdjO2cFOI99Bm6ARZOVCfpKg+sxm7wDkAaJAKA1uEkRNFJEtsDMATCAaUAP4MD15+TD/mg2sDewKcBP1UvK7K3A4cC7A0uxh8jJCXi4GjLP1Ut4OZvN+ALChrNVksjrAnmVEkfEyrVTn1+p+Ra1+C86Zppw8mD/iIxjpbUJFeetVTEpPAElJWoGCTSC0g1jhlm0DYj8oaqgpNUdS6OXRK+AOtTTVONKpQBVOcSYbv/XLmivvGK1Oy2u5f9VtwCfcTwiNPPCBKqxGgKIVVdoq4gU9LtBraH9SfYSdO7leDi3l1nH3c/hpAmd/xmGO3hLbQOo+zD3JoVXc3RxayAEu9UAAVaBpaBHRUPZSe7u9285SJ63UjEVjqRERPCHkfQSH4HE4hLwJKfgIeePSSY2LzUqsDmfpMFiJ1bFyrNVuIybGUe8AB5U0M5kVNSbEJL8y9sqRomn0oVqc09ZbYb51uZUqr+fURbZpaSsYrKIVmcZNjsAQ/domdolYEIEV4Zh4SUQHRGgjmnQzUalsNTUjujamhoVlRGjqIpr6koiJckbDIpwh9oPKT0VlQbGHItoJkSj1YfGAiPtFiIpAdKtgQAYbtjMWgVAg6+IdgFirg6OHmb607oyk0mmy3bV5ORgHx+P6kGz6NeUn0xp0253pdP43r/XObvX/XU2YFy7qttDAtkxUMVGHlnGNGIJ0/nSC6869NutPv5+ee3UNnHjiw3/v+uidx2EF9WPQraO7C77MFrR89DvoPt2fQcyqsX/HTQQXRZg0+qk6tsr5uBNxUatTi+4ZSu5M7k/iZIRJEjDg5h+rD7QHEBfwBhIB4rQElMsK/FmB9xRQ1P+6oq1W7lG2K7hJmaagkCIryESL/0tBpMIbCrxKq/3xP0g1WKRAs9KpoCoFQgrYFPiYdIVOKR8oSBn+1Xvabcq9NPWLdzRSdkYZfuu09mPllIJeUOAxBegoqE+5TUHTSJfDJ36mjerzeFV5U3lPwU8q31fQXco2BfUqqxU0k44FFbTmocMamcc+5QXlVQU/rAAMKaDXUYYP/JNmUWD/h+pbyqfKmILfVOCEAi/QVrv3avpkU/pkHQqM0fnCaeVDOqFXFbRfge0KrFGG6IjQqswmHarfuk/7kHSF8h1tV+iomIxHVt9fWH1ESSmIjLpGX73en0KAu7ZGAVlpVnoV7FAiCios60VKPuJ3zFbAohD3Z2x8JR8r7GYF1irQpSxTULUCkgKMIigoo1BmLm1s0c4ocFKBwwogWhBVVIVlyCOrrFUOKyPKOcWoV61I1ZJJwy4F9KkxCvDVbnC4wR15EhG3O7Uv4XY6bU8SGdI/HRh925m/65KH+XL+qsM1o6875To0uD4U+NW7enI+FCgXmPtqmXwVQcjj7uV1EUZZP9eh8IBC63T6FDFKF/Q7/HHckMFfuUVcuFLkAPfXv714JRvcKU2s9AcaF0+ZeFM8Prn94a6zZ2Oddy5omumOVl77LIM8YQnMChvjU1bOnLZCDRd5D+bc/kPPtQ/d3OmyjX75d77ZmE6EaynB4hbmJ2oD0+PhJG43d5BjWW4zSWAbt9Y2bNtlw222LtsyGxZsURtibXDOdtGGjtlO2s7asE037ll61DeiLmibpg3YaCO9Caq2AWvz2CQbbmZtdbY20sl622a94Xmb6YztnA0h2mm1LWsbsB2wHbaN2Phh/XHGxloM/TxmuH7syl9ArgX9ll5+H/O7ti719WvIXiO8fGj0T4doTDB7zfXOx5wSBFP9lKzXB39Vxzib15awYTMf5JHJEYCcIzA70B8YIlb3RODDwFiAv5i/9nA6gNcGwBGIkHJ8mhR9Su0x7A/AcAAigRRphImpfXtN4EXS8lNqiUntVKA1gMcCcCYAJwJwIACtpPkQjcDCEOn0BOl2LMANBIAY6mraAJ78VK+dCqwh9V4MsAJteZp0OBZgdwUOBNBQAAZozdYAOkf7G58sF9XbrybzPa0PRZDBtRnnc8mE+0nHdD1sNUEUSN0a0RHCh3QZhwOon75VB1AzmfO58SaUIDsDuJq+UFSB8z3354FItd456WBEpwaFHyiSXzjpOGsdth62jlhZK+o37TSdMJ02sSZvD7IxJjCZPHjAjL2onxnfXOKSEsM0+laf8NZX8Ph/vw/79ZxrYfyr5UuudbAuf1Gpj/JHXt6cMRr+xDIQwAfN76Q3HUmEprBPtIVcHUvW3FDzDuGZ71j5X0Bz7rVfsAYOX14dUvLxi2bCPzHCP1YmxhxU7z3oPEbsUAS2BB8NEpOzhfjqZhREyG72Wx0a01MUd8RT8TXxofjOOJeKt8Znk5f98RPxD+NGR7yfvJwmybG4oZFmIVp5iJSyjniEVB4iVV+MGwg678kS9cYP2GxObsDTL2K7u99ZINsF5/hNviXjCJgGNeRCVIPGLcg69aPfa/B2PMKBe+Kzh5csvWXJ0MxobtY7o2/uPwRfPvzjddWpNf/yED6cXd8pjW6p6ro790Ju8rgotazeNW/u3vXtujz15GagW4iP4mOmqv4yL9R6JnvQnQ640wJ1XBuHyjhwG3W0b7ZrRuaznTaw0c+8bC6GDzGtrfr9y7fk2prqQsDaU8z6vBMQUX+uDOjfzIR4X9X0WzsfeG2Tqm567YHBzVPd8JeuZ/c/umlQ7up49j0o+vGPIfSbZzq6Jh3/4HMyp8lkTll9TjNVpZn4pL0ibhY6hV4BT/XN96Hpjh4HwjaGoDmNcX+W5YnB4am7o/Isz9sZJj8xGhcc1afG9OuRdLceEKF3vIqRy+tBdpjceev0Kh/vnrp5cMvrdHqv52Z0yYObHt3/bNe3Pv/g+KSujmd+k/v9j3+cO//es/lvLAnuvV3/7qqMuVWduSixMoG6YytiyBDqDq0IYZNvkW+lD5uNYLbRjyo5J1gKX1TSb31aoxVqxde/qOT6425HP/12Mn+399oXk185r/6fv5NE//tHkT3P/+0x/dvHAzs+OrBgwYGPdmw/92RX15Pnth8B9Fw2+1wud+RI7vLz8+Y9DxyVk7Er3AYiJwJTytypdm0IwAY3WOwh+2o77sO3YdSEp2FEfFSMTCEEJvLLgJ3pJbDXJ5Yz5dCqlkO0HNaWHyg/V46NPdn4uTiKS/2GgVIc77cOhCj7k/XmP2PKH4GQFVNRv3b6kef9/OEH1LLFQJgeWGpdZdAFgT0497FfbTlW3D69Uxr64fqG0S+eBdtPbu56Pjf6YtPW+zeUHSJm5Lnd/7aj7fI9CGHofPS3uKL9qSs/Opj7QQ8hWF4iCM9148UQIuvF8PxxhqMBjMtj2lnuPHeJwz/jgNO/ZPjsc62bW8Eh+nb0k081jlrOP36sP1XzR7/XlnHQna/8o/c/1AwcvEfTL7/7Gy2fPXKUgE29tvXN05ouYCX5+kdHTha6efWEtp6Dd/P11Xk/PK6d5OAZ7mUO7eZgJQf1XDuHqJ1HpP9/aiL11H1PaZz66F7tD9znHFrJ3cUhExfgjnNvcOxaTh26XyO9beMe477H4Y2Ffs1Ll9N+X86P/nJ3j7aiMMM58/MTsXfO1iQOEOfikJqfY3OrXvRy/Q3amUI/1uo6kj7HXeQw0ptHpHzzQCCsObgXuRMc5uGxakYlTEW8NsRgpvVUH910grnkfoLAyP/Crag8HqMhgUFZvgrmiCsi0wusch6mUd+fQjS5ptqdxvHu1zLTuZZchHTvYRjuFU5jHMQi/VnVDE5w2h2Cw+QCl81qgLlWwdpjNHiMRkK4uaRggOU8BCiFBBCoJyII7H4j6KGWtBGw0ePxwHkPeOiqqhdq9Kk65AnaGQ+gAc8Zz0UiurQsKullR4PF+Tqlglvr90A9S5CTfcDloB/DgoXoL8QLBuKRGllHvxkKRx3EfSdOu6tJv1xEZZ8GQvr1YJfwFsWq+hnT4Fc9NWFkBProBTMg0pLQQx/pfAgExzDgGJzKdeyFN34C7z0/+saxLaMXt8L2P8AvFWoAvrjMU0MAm3L3sreMbtC/U8y9BkPML4m+bTlm2st8R9+/GO/UOIaQZoDGLQxPcs+tMQ0REIBNA+617mE3djM09HzpAvSl+k7Ko4Wvjo0EChMVxRZunMNQbNr6eb3zPcXxYk+bUlRX5q9pXrNkhn9muKvBFXC7Aomi+iZvRQvz/wBFAAWmAAAAeJxjYGRgYGAUfL1xw/pd8fw2XxnkORhA4OLt/cEMcPDPjb2TdRGQwcHABOIDAGMSCtIAAHicY2BkYGBX/OcKJHsZIICRARXoAwA5dgIxAAB4nB2OMQrCQBBFv5ON6WUbEQsLkbCFpUgKQSwkxWIRQsgR7IKHEItcxNo7eBBbD+Fbi8f/zPz5jH11yt9qnPQy6Q7KWzX2VGl7BfDZqAhnfEluDluoQcwvZA/Z8t+xAA8z6CBO6aA/uJseKY+vyAb8CvpilKEbenbsDL3SV7uP1txU+B6O6cd0OxnUop4/4w+V/xwWAAAALADgARgBTAFMAcQCIgKgAvQDZAP+BFgGVgboB2YH8AhqCXQKDgqKCyAMMg12De4QIhCgEWQSEhLiE14T7hRgFfQW0BdiGHoaJhqeG74cRhyQHN4dUh3KHqwfSB+MAAEAAAAvAFoAAwAAAAAAAgAQAC8AWgAABAsGOQADAAJ4nJWPQWvCMBiG32grbMKOXpfTTlpU2GWHgSIiUqWouOuqTTVgE4l14HHsRwz/xP7N/s++tsFdemlCyvM9vHlLADzgBwzFeqRTMEOLpoJrcPFsuY4nvFh2KPNu2UUTH5Yb5D8pyZw7ml7xbZmhjV/LNdwzZrkOnzUtO2izN8suWuzLcoP8da75Vh8vRu72KZcq1iYJU6kVj/VZRd5wkK2OLzfC5H4pjIwXOgnVNBBReODBaNyfrGY+L4+W27Uwp+wnPa9bHsAcGhxb+h5xgYHEDnuk5CQUYvIGCUIykliRz9yZKIKHIQa33YFPmQ0E3fjPL/NZ0q0FzVmTwhQB2Yj4QH0BRhijjwlWmFEHr9RaJbvO6XR7SY9e0K3S8AeGYnIBAAAAeJxjYGYAg/+KDCkMWAAAI5ABiAB4nDVPTWsaQRiedyZR+8WYlkpKq5McQmsXqnQp5FBwCWU31YOb2IVowLWl50SYJlf3ouSSRgK1pBHaozdXvHiwuv8g/QHZRuixFW2uQeysocPMw8Pz8fJO60ahB34EKDHDPswpWRhM4GwCSxMoXYF+BdZl9RL/HUdZc9wf4/TIHDVHJD4COoIAGgaH+rAwLA6/DX036R+4jX7Dwq/BKruQXeOnfG4gF17qruXaLulMHSXnBm6pLhDjnIRY0Fly4k7RsZwfzsAZOwGrV+3h790Yo13WxaydbpfapNAA2mANrJ8WTnG1DrTO6rE6+XLyjJ1oEfa59pgNauMa9sa/qN1ZUM1PUDo+OsbFilWpVohVrpZxc7+/j7keZbs7EtvRnrIH8qLhl4nhI1PmNV+9W3miFkyFmSK0nYuznBZl9+S7xrxYdk4EKWEkQdJklxyRPvEHNvUI2xBvoI91TNMsHUuLHw6Ut6llMShZTFpJ8lqNsnVtlVGNaTHtTLvQRprP1OCruGpT7atEUaMxVVEjy+qj9YdGSL5vBGVqYEAGyMiI0SnFlJq0RAlFCYStEMxDB6qtNxlJSnX8082UHdC3bTiwVzIeKhs523dgIyO3vdUC+JgtHx6itXDKfp7ZsgvhbMp+L4jiEUuQYLgVQmtZzj9I3gFJEnRPIJL2hJTn1yKS/ttI4sA54hwkz5tRoSAuebKneB0QzTxHHniuNEt5jPPF/D+G69JVAAA=) format("woff"); } Q1. Critically and briefly discuss the existing economic systems of the United States and its distinctive features from the economic systems of the United Kingdom and Japan. Q2. What are the key challenges does the US economy does face in the context of rapid globalization of the new economy? Is the proposed Trans Pacific Partnership (TPP) trade negotiation proposed by former President Obama (put on hold now Donald Trump's Administration) for free trade negotiation with 12 countries compatible with the globalization policy of the US economic Systems? In another words, what are the pros and cons for the TPP in the context of the US economy, if passed and implemented by the US Congress? PLEASE USE PROPER CITATIONS AND THEIR CORRESPONDING REFERENCES!! var isIE = false; var f1 = [['t1_1',1830],['t2_1',1750],['t3_1',483],['t4_1',1920],['t5_1',1935],['t6_1',1861],['t7_1',1783],['t8_1',1919],['t9_1',1941],['ta_1',1084],['tb_1',1812]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed