type on this paper and not a separate paper 1 You are interested in finding out the spring break plans for students at Reynolds Describe how you
type on this paper and not a separate paper You are interested in finding out the spring break plans for
type on this paper and not a separate paper You are interested in finding out
not a separate paper You are interested in finding out the spring break plans for students at Reynolds Describe how you
type on this paper and not a separate paper You are interested in
finding out the spring break plans for students at Reynolds Describe how you
type on this paper and not a separate paper You
type on this paper and
(type on this paper and not a separate paper) 1. You are interested in finding out the spring break plans for students at Reynolds. Describe how you...

Category:
Words:
Amount: $25.31
Writer: 0

Paper instructions

please answer the questions on this worksheet in full and show work if need be so I can understand. thanks in advance. ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:113px;top:89px;} #t2_1{left:94px;top:118px;} #t3_1{left:113px;top:118px;} #t4_1{left:113px;top:135px;} #t5_1{left:132px;top:149px;} #t6_1{left:151px;top:149px;} #t7_1{left:132px;top:163px;} #t8_1{left:151px;top:163px;} #t9_1{left:132px;top:178px;} #ta_1{left:151px;top:178px;} #tb_1{left:132px;top:192px;} #tc_1{left:151px;top:192px;} #td_1{left:132px;top:207px;} #te_1{left:151px;top:207px;} #tf_1{left:94px;top:236px;} #tg_1{left:113px;top:236px;} #th_1{left:397px;top:236px;} #ti_1{left:94px;top:265px;} #tj_1{left:113px;top:265px;} #tk_1{left:113px;top:281px;} #tl_1{left:132px;top:296px;} #tm_1{left:151px;top:296px;} #tn_1{left:132px;top:310px;} #to_1{left:151px;top:310px;} #tp_1{left:132px;top:325px;} #tq_1{left:151px;top:325px;} #tr_1{left:132px;top:339px;} #ts_1{left:151px;top:339px;} #tt_1{left:132px;top:355px;} #tu_1{left:151px;top:353px;} #tv_1{left:307px;top:353px;} #tw_1{left:458px;top:353px;} #tx_1{left:151px;top:370px;} #ty_1{left:151px;top:387px;} .s2_1{ FONT-SIZE: 46px; FONT-FAMILY: CAAAAA-Carlito1; color: rgb(0,0,0); } .s1_1{ FONT-SIZE: 50px; FONT-FAMILY: BAAAAA-LiberationSerif1; color: rgb(0,0,0); } @font-face { font-family: CAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAAtwAA0AAAAAE3gAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAAASQAAAYIE7gK/Y3Z0IAAAAaQAAAAuAAAAOCX+AcJmcGdtAAAB1AAABRIAAAp127YujGdseWYAAAboAAACRwAAArJGerxpaGVhZAAACTAAAAAxAAAANq1cQWtoaGVhAAAJZAAAABsAAAAkBgIDcGhtdHgAAAmAAAAAFAAAABQRRgFobG9jYQAACZQAAAAMAAAADAI7AyFtYXhwAAAJoAAAACAAAAAgAb8LLG5hbWUAAAnAAAABFQAAAhOaMJEUcG9zdAAACtgAAAATAAAAIP+cAMJwcmVwAAAK7AAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nGNgYGBmgGAZBkYGEKgB8kAsHwYWBgMgzQGETEBajyH1/9///xGs/1f+z4GqhQBS1TMwsoEIJgbiASlqkQAjYSUDBQA5/xqhAAAAeJxjYEADWxk6QZhViYGBtZ35EgPDv23s8/7eYjX8/wnIf/j/07+FID4AG6YR2AAAeJytVWl300YUlbwkjpO0tFkoqMuYiQO1RiZswYBJUym2C+niQGgl6CJn68p3foN+zVNoz+lHflrvHTtmM21PT3Ny/O48Xc17786bJ3GMqPQoENeoAyXP+lJafSilzqO4pmteFivp9+OabCaekhZRK0mUzHYGB3KBy9mOkjWCNTKe9WN1pLJsoKTaj1N4FJ9VidaJ1lMvTZLEE8dPEi1OPz5MkkAKRmGfUn2AFMpRP5ayDmVKh16tloibBlI0Gvmog7y8Fyo+OZ51C40aYKQylWG7fK1cz3bitO8N7iWxTvBs836MBx6zH4UKpGRkOvKPnYITpWEgZSx1qJU4OhxIYe9I3H0ElFIjkCmjmFWhs/9nydlT3EE204SUdMtmNT1kOL7OK6V6qjqZHlBFW7TjURhRHsKfxJdiXQ+2hi9XTF4ud8QdbAUyY+BSSmaiuyQC6DCRKlf3sKpiFUjVKDllM1RIaB+xZDZKVZbiPFBDILNmezfOp92tZEXmD/WTQObM9k68fX/o9GrwL1j/vMmduehBnM/NRcgglKqfiBNJoR7mM/yp4kfcZQhTrPfj3IVaOJ4wg9YIO9Ooabx2gr3hc75SqFtPgkp6yL8H78vKvUHP3HEWNHSJxNk4dl3XHs5byLLc2Y0dmdOhShHxj/l515l1wjBL8/myL4997xyUeRvEt/xATpncpX3H5AXad01epF0weYl2EZLTLpl8inbZ5NO0p01eoX3P5DO0Z4xU/H8Z+yxin8E7HmLTvo/YtB8gNu2HiE37EWLTKsSmrSE27TnEptWITbtiVNv2R90g7HyqIkidRlZZNOZKoxbIqpG6L3X06Hl0YE+9QVQ9aGmVPYj/loGuCOTCWGl3Wc43xF1as8V9/KIQLz9qGHXN5ukbR4oTNse1mBiUfmf5d4d/Wxu6lTfcJVRiUDcSnZwnenPQCiQwzdPtQJr/REUf7YN+EUfhLNdVU/V4vyHhnSzr6R4uabzncbJgjjRdd2kR8dcMskKP499SZKrjH2ZNrVQ7w16Xnj9WzeEeUuKQ6vhKUl7ZzZ34aUEVlfe0sFo8m4ScKhVMJ23ZuosLFL16G1IOj+G8LETpgZZiNDjA40I08IBTDoxX3xkgJQxp3cXZaUTooi4YGwX7TQii7YjCk5Tal9FI5dd2xY6sqG6TwC8mmKdryfNYOPLL1EDBU14daaDbkOaKdUsF90Spru4xGE/rqpWMBYwUdXbjpmrjs8KMR07FXMaS17G6M2z1zr4entKkth0di2bvXhuFj07OJeUH7dX6Ts5x3WjVpGRdDNZ20sxX3UXcuutjd/9Fd+tl9kTODSNr/sRNbxq55GcIzE5Btq9zcCZNWQX11ri9TqRlZ2n0eRM3ZLhd2/ArE/6HPuz9X63H9DlU2hpz44XDriWjHG9TjJP6N1h/TY8EGNUxLvkTlLw0vJnHDi/hQlMMLuLmG/yfYka5iwsSAIdGLsJEVK0DXVUXn6ITnbYMe1EiwI45dpw2QBfAJeiZY9d6PgOwnjvk3Aa4Sw7BNjkEn5ND8AU5NwC+JIfgK3II+uQQ7JBzC+AeOQT3ySHYJYfgATkbAF+TQ/ANOQQxOQQJOTcBHpJD8Igcgm/JIfjOyOWxzN9zIetAP1h0HSi1/YRFC4uBkStj9h4Xlr1vEdkHFpF6aOTqmHrEhaX+aBGpP1lE6s9Gro2pv3Bhqb9aROpvFpH62PhSOZTiSv8Jvx/BX+MB+DMAAHicZZLLTxNBHMd/89jdrtjHlt2WLV1wd7ud0nZXqV2wGurShxLBROyFig+SkoqJEvTCwRBNjARPcjLx6tVHxMSTR/8Kj9w4qkcF65QQTXSSOfxm5jOZz/c3QKEAQL4It8GBCkzBNGx9BIQB1Wbfn7iyEJSBYIQJWgFEMaJdAMAE8CJQEEJUWARZFudBFCN1CIWkeZCksNQYDkr/YiLIIMrt//C/UDsITweKouaydj6dOTZUGKyS06URrKkRGkU2y1apX87aVgTbFhssV/HRJi89jEzFnOTz29CZ2lxxanmGGYXySZMq62GaKvjuaHOCTbDUgH78VsxgyQRLK0qaJZLMiP16S97tXy2R5v4nellzjJhVbU/4c5W8k0ks3zfHx7LuJDtVUTRFO9ATOUNRjBwHDy+gnR8vfXrQt4LZ3neyQ3Z5jh7MBM1kX78GBGFE8Ar3R0REiyEkCNCSEECyDhjTFlCq0QbLIsiPZT3mGcNqPBqWJXCQI0cL6NBRtM0RnkVfOTGKIqRv7PMEkpYomWUP4+TCi9VqfOjgAfbm15rBzbqnDMTEktnu3vO7bzYunF9/vfrweRxrVnCD7J5de3VnbPj6s2uukTHkUMAqTrzx9POj7s6TS4+3N851LuZ6PdjsfUUbsAc2ENgE/nzes9TPJYgHUUAIWlxag0bOwWn+g4Ab/RnSBwEJzaXGOF+9S7dRR9iCwUOOn2txOMK5DFYK6Kh7/lE3UUe1XV0vmqpqFnXdtVVhQHf7launXEtVLRd+AynRa5kAeJxjYGRgYGCUitu4Yf2ueH6brwzSHAwg4BV8ZxYDHPz/wHyTtQPIYGNgAvEBQmwKegAAAHicY2BkYGBj+MfAwMCaxQABjAyogBUAKb0BewAEDgArA/sASwIFAIYFagAAAc4AbAAAAKQBDAEkAS8BWQABAAAABQBCAAQAFQACAAIAUABdAG4AAADwCnUABQABeJx9kNFqwjAUhv9qK2yDXW43MvMCLepux0Aq4kSliHg5CLbVQJtIrAxfand7kF3vZfYXg+BNExK+85//HE4C4BHf8HBZPZ4Le9R7jlsIEDpu4wVDxz49ieMAD/h03KGu6PT8O0bv+HLsoYsfxy3c49dxG2/4c+yj6z07DvDkvTruUP9YGrE1h7NVu30llM6NLWWljBa5Oek0ikf1CmNpC1WZlSmlniVZKguRjCfD6XoxF7eW22iT2WPdbBD1bxNYwkBgy/uAMywft8MeFTUFjZy6RQlJRZE19Vo7kVJEiDG67pCRpLugs6JnxVNXasz4lRn9kjlBHmPCj55ijQXmVJq6NOU27GpxvE424ET9pop/jQVYNwAAAHicY2BmAIP/MxkOMWABADYOAl4AS7gAyFJYsQEBjlm5CAAIAGMgsAEjRLADI3CwF0UgILAoYGYgilVYsAIlYbABRWMjYrACI0SyCwEGKrIMBgYqshQGBipZsgQoCUVSRLIMCAcqsQYBRLEkAYhRWLBAiFixBgNEsSYBiFFYuAQAiFixBgFEWVlZWbgB/4WwBI2xBQBEAAAA) format("woff"); } @font-face { font-family: BAAAAA-LiberationSerif1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAADd4AA0AAAAATwAAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgEiAP0WNtYXAAAAFcAAABGgAAAvL9EWW6Y3Z0IAAAAngAAAERAAACFj5CQPpmcGdtAAADjAAABDcAAAcFc9MjsGdseWYAAAfEAAAq9wAAOxyPfNCoaGVhZAAAMrwAAAAyAAAANjiYGiNoaGVhAAAy8AAAABoAAAAkByMGAGhtdHgAADMMAAAAjgAAALStyAtCbG9jYQAAM5wAAABcAAAAXCR3MuptYXhwAAAz+AAAACAAAAAgBKkGxm5hbWUAADQYAAABIQAAAnM4PS2ncG9zdAAANTwAAAATAAAAIP8kAGRwcmVwAAA1UAAAAiYAAAJ0QJtZwnicY2BmYGCcwMDKwMCkzKTMwIBOM8IBAzbgACJY00AkuyLjbkwFAJ/fAxEAeJzlkUtKw2AUhb882zRNm74fadMmTd9FEMGBExGdOBVRHDoUF1Bci5vpTpyJiC5Bf2/S4BoEL9zHORz4z+EHDPY9QJOJ9iFILs3E5E2IhDHpHbFkwwFHnHDKGRdccs0tdzyw5Ul9KSXqMYtMdZirzkV1xY2o7nn8VaG+1bvMV/WpdrJfMm6Xzefs/YRZimTvK8465WYc55xBjTptOpk6YigZYtbMmeJTJsTFo0+AQ4sCOiMqWFQliU2RBiUm/J+caHb6wbphWnah6JTcslep+rV6o9lqd7q9fjAYhiOjFk+S6Wxeb6/WK7rQSfYOJbLURjxHw/Ra5O4YxGJlSi+Hfjl0vX7giBN9VLGqS7vYKE1MmvyJ+gEfA1HpAAB4nGPtZRBl8GC1ZeBnKACTKIB5DYMkiP7/BpX85/P/FwMVAQeEmsGwjGELQy/DTYZYqIQbQwBDJkMpUAQZHGS4CBQFgQCGKIZVDF04jF3DsAMoD1GXwNDPMBOHugCG6QybGY6j2BLAkMtQDXTLVoabjIYMJxkYGPMZPjFyMDQyHAWa+gko5ovNKCY+IJEGZqYhid5mmM3UzeDF9ATImQmSYdJnEmA4wjCHMQ5ocgnQn71wH9tgGNrOUAskgxkyGMqAbDBgtf1zi4Hz/2egr2oZvBiaGBwZcpB07GGcz8wFjL8QhvnAMD0IFtOHSbJ7MGcxbWNi+jsZyJnIkA7EiYxAvzP1MjsyuLAKMm4BAGVWQ3wAAAB4nHVUTVMbRxCdXQmh8JUVIZSq9uDZjKVASYqcspMAUWCj3VlLUZwgJFfNkhx2QaJETpx8oJIqbqEG57/0OheRk/9A/oMPOYYjvjo9oxUGqqJaSdOvu1/PvO5Zl4fieb+319398Ydn33e+a7eeBtz3mt+6O9vfNL7e2tz46ssvPn9U/6xWXfu0XHrIPnEeFFcK1odLi/NzH+RnczPZjGmQKmdBRKEcQbbMWq2aslmMQHwLiIAiFNyNARrpMHo30sXIo3uR7iTSvYk0LNogjVqVckbhb5/RsbHfFbj+w2chhSu9fqbX2bI2FtFwHMygvDjyKRgR5RC8GEke+ciXzM95zBvO1aokmZvH5TyuYI2dJMbatqEX5hrfSkySX1RlIVPi8QB2u4L7tuOEtWoblpivXcTTlJDzYFZT0mO1dXJBk+pr+XJskYOosjBgg/hnAZkYc2WGS/k7FCqwznxYP/2niCcfQpX5HCqKtbN3U6fzvqQBMyWLUXlN8Djs6t+7SJwiuZJ1TdQyQHmlDBgNZCTj8buzA0YtJpOFBXnCUWGyKzBr/O6vCxuClyFY0cjYSg8b7HXgo+5PAsxSQEcxIvjsMGfDdgrhNGb3/9wEhUA5UFPHUQe/GLvkAA0464qJTcmB/Yq49UoIZqQ8r6eej58rz9nUc5MeMexmpyckZEvtAeOo8UUMZwc4T7+oVjALlt7aDpPLBbpZD3UsxV21B8cUZsooC2bdTsBJUSnS0sbS28nflY0FyoVlusmQRvFwxqP0eTEqIgGtVaFVmbS+L8D1ceHGaY948qiOGXGELTr2dfugzk5ghTVv+qm2xY97QqekabDiAYkO0yyoc19VplxG/mQLiot1xSV5/O5N8oTafz4mT0joq+BVD+eqzKUYHMGDyB7gTTuiwnbADbHBIRPDUA0aKrT+Bss5uiKYXl90eqzT3Rcb6UYmDkWXLfF7NEzYExocOciX8lSYdibEQAsBGuCCNRv4C7OlPH4tFFyjalSbDSoMm0yjcRuwTvnQT+OUfYd0Ro2T15qy5ZSJPF7LdkJn8qlVTXTTtDBm5JWorakrU8I3AWIm0mhIaVlUM08FG7KQjSi4u0KdTcmjVU7F0JqnverfsW6JhTIRB91TQ4kJQcW+LS481faN2brnbk/dVOZZpycVOUsJCe68DUSNsLtRsPXtV/eZBTFeYrzR+j7LxHXVXR6paytZeyBZTzR0NL5BfrNPVa1l0jE6/Watii+zZsKM827iGue9fXFpEULP++KVaZhe1AyTh+gTl5QQV6OmQhWoDKoMxbSHRl7H25cuIWfam9WAtg/HBtFYfooZ5HBsTjBripmIZSeYqzH1wS4VR6gxvr85Haj+/BqOZBSqGSerqAg+BhhsG9Vh24lh5hZgjg2bMM+aCt9R+M4Ezyl8FifDWDVq1VNpcXZdrP0HdvDztwB4nIV7C3hU1bno+tfae96PPa89szPJPDJ78pqECZnsPAjsbCAkG4IyYEBInCQioIAKiSCitYnykqIHekRE8UE9HG2rPUbkWK2nJe1Fv/pZlN6ipy1tpT30dSwtp4frbYUMd609E17tvXe+ZNbea/3r9a//vf5BGHUghFfwixFBZjTlNUDp6YfNnOVsw2sm/mfTDxNMH9FrhFXzrPqw2WS9OP0wsPqMJ+5Jxj3xDhzLy7A/fwe/+POXO7jjiA6J/Ajxb/I6ciMv+r2mmzzgcbkFt9ULXqfDBIscgqPXbPKbzSYeFtGGQY73cxwfFkCIOTy6IHDPm0EzZ804YwZi9vv9cMYP/jcvjb9ev1RnpeZOTdFP+AEP+k/4z/mJ0RaTjbbXSyIFmArBpw/4oYkDzuka9LrpMjxgF7oFbBFMPOcwc+4BG3hRe+ZsQ0NDeybTn/O2pnP0DdK5XCqVyg0MpVJDw8IPBnK5nKd1Rjo1tCMkpHakjhULYXwccsIO9j21PhmIK82QgSArSZwAicPxfNd+eO87cOrrE+8d2TZxbgfs+g38SFGUMPeXC5YwLWFL/kHujomNCAGqpsgT+MeQFe3QqviuFAI7gml9aC16AB1AXBj1obfR+4hjby/TU7Mfs4Od7bi9U2elVtrSpu+xA0Z2wZ61H7SP2cftpj304ZydGIB19QVAh1PQTVkrPacsCaD2sw3tZ4Hud2hgOJUaFn6WGxruzw2dpXsyNuOpVOKw7it56eBB6OyU6uokHofq6FHTNeNLf+C/Q15Bfvi5JqzFgGPVdfoa4X7haYFN+Tst6PLo3Xwfj5fzw/zDPHmBP8x/jyf8m5dOaBsp7GP8szxew9/P46U8kAo/SLgaz8XLMCe6KlydriUuzmQTbRU2IporzNgEIMAiQNDtFvxut4Bhkcvt6iLYTwh2wiKOcN0Op9/hdMAiO2/vMjn8JpODnrbLSTC4m9zgfvPSac1GV2V2B93Y4njz0puHS+eyQrN75m5wwGLHSgem71/VljnnZhxgcogObHUQt5s4iElAoix2iD0iEUTgRDginhfxQRE6xA3iVnGvyNWLIIvQI66gL4dEDonQ2iOeoVBEEwGPinBCBJEdRnWtzkotHY7qR0VYL46KB0UyIEJMpAdvEkzY5CQuepYUA1mvxQ2Yc7h5XkTtwQyl2WBDOpOhlNpAiTNXODx6arkh9hkeHhY+aPAEKc2m07QyxSD6aeHJZAp/BQo+uSN0FTkXi6n1kDM+jOzpuEOpXGrICgk7JIBSQsAchkzYeOKX5N+58Xe/npd/ex0cfeaT/+j51UdPwyqy5uLD+M6JveR+SirhiW145cST+CH6zGTDjZf+QA6Td5AdRdGj2vSttr02zNtgl+WABdsssIs7wGErB1vxXoxNGCwOHcVRPBbHQrw+no2fjnPsTYuTtjjDnThznv58HNbHQYsPxkfjB+PcYByMJldyii5S4ZO1CuEsoVg7S4k8fZZuaHiY4oLy9S8ohffnih/w40R5hdLYlGkQzY1T6IsLB/wRnGlQMTn88a9O/vjHP/v4p0dKZqyYO2+wRRRbBufNXTGjBE796RLK/9cfL/7v/771qdXNzaufunX502tbW9c+XeAPxtP76X5DaO3rnA3wm5d+rKWtbt0XhXUwAgTA2oVcgivmGnedcJ12mSyuaMlACdZKYIlvlQ/7SAiz3QhWh45xSHBnvW6rK+socm17Jp0S3svkYGiYnvPZBkoOU+tTOQgkKun6zZ7L/BtUSQbvT00r1bQ28Sv5WZs2gdcazOZyMnknf7fF6bVNzGKcTWJS3Ubf1NoIXXslQhyi8kiCmzVhi/lxM17gHnDjBWgAYS/l7detTt3DuOkp+uCsoizV5uh29DlIm73b3mcnYSusMG8w7zUTQ5hz5kYzXoHBbLa4XE63ye2i/Orsspj9FovZZTYL8KrpqOlDEzGZnOssIFhilnoLcVvAYglr4cEwPhgGFI7R52x4PHw6bJohhMfCWAjX04rB8InwubAJ0cf14T20fpxWmMOMz5bldKO8YXGhVFqNUvOlpupuJHQNBgAFhEAsQCwBQ4p6A3pAzErI4hRIIOtGLjNH7L6ACbLEbaA94w22Uv5j9MQoiaqPFFMXhtQcFo4zLmygR5HxtnoyO4RUSjgm7LCMW8YvcxbTLogW1gJDWQtKA646L1gKDy2H+Rvz52HpqvzIknz+gRX5kU27YCq8A8+H6+qC+T9O/DFITwye2JH/81VCGVDPpT/gH1GaU9BXNHlew5ca8BcCjwbwNHGeeL/4JZHjM4FMMkOml8wv+ULJoyWcQZRBeoaREKWypCYE9GTS14maY83QzDBSH4nrC5oHml9tJnWdpXZ7qa+Or8nGGys6KnBFRVwQsnyjvcN+yE5iVCPZmYjKUBUqMPKk397WVkhn0sJZKkco01GSpTSayqEC27koq03BlUomGIFMQ5PSOMWkNKqU78QgpeIpkCg3UT404R9V9mzrT/fdOM1ZNzW6fFZuZU3HzX03d9RMuemeOR0PT0/XlPRmFi6umbP0lqVzasDSvrq72u4W+N9uKa1auLhhZm1ZpGJ672xtRUfC5zh+VzCU7ZjSVh2JVWu3MJxRm4X8mtJ6FRp7CznpnlMWQa/2t/pxyA9W9hfocgsgCjUHawDVCDXjNadruNaDNedqcA3DkT9Vr6drQKiBbA2srxmt2VNDWMPr0XLdAEj5RB1Fu0ZlQLIgx+Rx+YR8WjZZ5GS2CkUDgpz1lQciPC8tsgmUyqiQLhomlMoMIksVRBcjMuFnjNmZ7KKYZCg0U/ZuiOBAkYAaKxLXsj90AhBcmr35Zrmpd2ZyOL/2wYWLS9vVJu9IfsWmR6GBfOaqSlU5BTnii8xa0z2xj1EU7r9pmcli5yZ819BXmMrwn1OdX4b2a8uCGkWUwzrdih2W6RZscZu63PY/2bHfHj0YBRQVouPR01GuFUVj0fqoRp95LToYXR8di3Ix42GUAo5FTahrTILd0vMSHpdOSFgykGqx65K5JGstc5vIIrdftGddTPIxzLQbhhrTT2cLnFdAiiHSKU5ESkvG1hkSKl2EEZlioKK1e3HLfS3/AJlN+T9ayrI3L5WblrYn7oMIOG5aRi2K30p1F5+W6uYL5aXeyKzV3XiVVGfYtfPovn9LaaSESvUvaMqqqnur8H4LWC07LfgZDh7jwMGBxYsSXcEUSkEX/ddSo6nxFImlBo0HLmUIGGq8hvUFPPDBbEnAlxVRZdYmJBCKLTT0VEZ4jykrdvC5swWxIvyMksJlbZV0QSLmKTLJFDIDitsEQ1/RbRtcg39Uu2VZfiSz5oV1mXsUjAGeg44N+b/ko8mOwbbpa5I1d2e2jXQmmuGXG9/eMsdht1O+dJ8P1X3+llQHx1fvWVYZpNiwWD+me0dMb9O9C6gG7dYEe4JKZXfIjV2EEgyOMAkyjR4W0s2xYAwLsVqtFlDtaC1uFWr31GKtdpC+7Kkdqx2vPV1rjhmv47Vcib3rkxow+MNHdX2NK5sUS2w2fmGZ4MlSnmRYaGDoYCd9tsHABVXc9KCn1iOq5/pzqD8HRXVt9hgSxMCGwRP0TQxMChicT865tS3U3NTgrbkz86UvTOzaCWnKFVD30I3jxxvv/Oeh+tsGeyvg3KpdS5Kc1WGZCFosP+amhOryY76pihJKpH7/h01Ht+t2r+Q26CFLcdJJ5WyU4mSDVrfTD/t9YPft8mExXBHG1pAUqg49FeIsFXrUbo/WolpQR2sP1p6rJbVMMsyep7NSC9ZM0ZOgP0LtQpRNJk2xrCSYFnoKJgt1SQw6oOw/ROnggwYqRycJASYNlOZAkcCZ+RLBZQDMeolTvAAXaB/ORWbNUkuCM29cWrfxKytqPzjavWV5a/7JloWKBP/oSenwE+/c7bfP4C02U4s7LDq1L35r82d/rup/7t5F8Ex6yQPz5z+wJF2wZ2hBfkn3nEBvvIUsVPfXWAWdozrazSwUt9Blt39qx6I9eSgJXNKfPJY8k+RaDyXPJ3GS7TVExWQqCf4kjCcBZ5OwPjma3JMkyaKoNIDqmKgs6RqlogMzCRKjDyeo5DBZorFswl0i2KNZV1lAQsi/iP+/C8uBa8VliqEtBf8/SdlRekNPz9VSUp2uUCm5ZmgIHGTwOgG59KaBKwKS2U6MLuL5+WSM4iiO6tEebeXq9OY0NpXBVs9eD6bO8Fb7XjsmdrBQX8ZarrsatAZADaMNuJU+ZBvWN+xpONFwroEvPJAFDZASudIuFBeo5Xsizlni8dJsJDwl6xNrKhdyVgEV7BJDKDJ+AcMUbKCOQZFdDIIpyg5f0RhkODBYo6IyQsqKBojBSKYiH+1fCxYcaJ01r2Lpo8szjXc8uzozlGEW66G8tgmvKJ/Z31Z/V0XNqszW+wgVkc3esoBDfeBf773nrS2ddrsjGi+15kPpdIjcuGpPX41HmPBYrKcYfnTKN0Pku5RrmtCTWnxtBYSDqSB2iaqIvTG7Wy/z1nmxwwtODwAHhJmYZVaPTue2lNqaukwtoy0w0AJaC9CHqV3+SkY0UZtLr6xc4Ad/RUV5KltaipoyC21ukfq5gfIsEgxuYjjyUI6iXEWZihnPTHkMXxavKcM4Y6w1SSOTqqNR5dpBKSDIDQlFBZ/ZRQJ+Jm/hh9rd2bqN+bzPndEHpnXkWkKRprmLB+ofc8VbauqXJ8tbZu76eEvbkpbS3R23NZDvhqbd1j2xTarrd1clQjXdt09X+9RK0QLc4zVzGkpLAhuPuwL5CId9U7LqWDREcXbq0n/AcX4G8qEgek17tEnqlN6VPpY4UaqQXpTekLg3jHeyVzok4YclgKw0KK2XiCw1Sh0SQZIg4dZzEpyUzjAFCwzuiEQYzKhEOAOqR+JOSKelcxLpkVYY7cckXpMAC1JMqpfIqDQmMd3MBZ7y+9E+W4CI7gO8D7VPfNBOPatM+izjOcP7HDZ8UcODHBqeWp8sCuGCYRfBJEMScNwXq5NKamM+X6y2RKqL+X7zU7X/Fqk27vPFayVWQQG471/Umdzpzc/Hd1D9E0RztFBlABr8s/z4PjfcZ4dGvoPHlTw9D0ONUDIwoz/vdoJTowrJ6UWWMGpvN/THD1L0kCfdvQgXDEzBdEleFZj8hLAlWDfvzu7t72zRtC3vbB/aOscHf+x56fkntgylerpeOgWl3/42hH/6YlfPzLd+/hmzGamdXcc9hCR0s9aKWywenTPBq2EYD0N7eEEY21xdJOsf9GO/34yIQGKEWAjnyFo1q0u3mu3ugGchMhR+e+aDVIFvM4bFTFmXYi2X4qlH6kko7UAt9kDCUzBq2FpvHBx44MGV7f/+7231yblR99S2Wf7h2/HjdZUffdQzMTJzls000+Z32woyW8p3kr9Qe62cPPIWNd5Ov041bQljKid9EEMVIYyp3cKxiMwUu0enYslDRDFYFokUIi1lEX9ZWUSERaVlpV1B0R8MUk1lKYNIGRvkEuXMsrJgxEqtIlyNtLK4juRl8mp5s0y6ZZDkarlVJnYZ/vKpfEHGT8lfk9+TyS4ZlshA22Xtt/+pfyrDWzK8LMNmeaeM++S1Mp4h3yDjsJyS8cfyb+TPZPI1GQ7I8JgMD8jAhseiDHTU71+Q4Szr/p6MXy607DQmtsrwVxnoyD+R4f3J8e8t9k3JbXK3TCQZPqZjG4vCD8i7ZGxlrftpx1PypzJ+T4YjrNM++UWZzJWhSQa/LMvYVOxH17RP2ybDBnmrjJfIq2SMZfizDCflMzJ+Q35XxjtZI2TlQRk3yLNkPNn9DqP/Yfl7Mj4kwz8Wh1glQ48MnTJ45XK5QSacDOfZVL+R8RH5mIxfNEC3yrBIXi4Py6RR7mB4qJCx/OalUS07R9ffleGQfETGk0MySGzAVbDFA5275TO2QjAm3yrvlQ/JZFiGy3M30ENhKwAwBrUmq3Rjcpmx12LqCmZlMAakSzshA14vj8p75DHq0PBueYGMLTFHvUNzEIejFAVjQawFs8HBIEFBIYitwRllYC8Db33ZeBlGZbGy+jIyt4yNXK7N1vkymFO2uGxl2bYyDsQykkClERLMxiS3sNBhKmWhWiPy5QlmckPM9aZCxlD4w8zf7jcEztBQaig1MHzlcznEQ93Pyc/fa72upf9K3VX1/ddCD6Wu1Aof0BU1GHFixsfXBtV2GN7/ANUwzD1JWaGgVpjbKzILrh0mY2usIPvyX47NWnjHnJLK8vJAOh5tTnW21Ysl+acH4cje/GePQz9Zc7Fv4aO3t2HexL8/GKyY09+qk/VGxG0dftyItjFdm6JfXn4+1Rtl6BntJjTPbjtge9lGPrVdsOGtNrBJXXZ/yo+7/X3+A/4Lfo69tflf9r/t/9RvEvxa6wzdH+Wi/ihuPR+FPVFqtBn+2niU20MfcLQYVzbKUNgoNcEp6PxNbq4kW+b2S9ngZLSKRZknI5XCz4wo3MTJnBFqhutVxBWL7AFPpEoUKyMeT6RSFKsiHhuLRW+DFPfJ1bUU6sLCK3YYoFlUZ2QNnXGDprSJ3WKfSNqEbqFPIHOCi4N4nrvXjYkTaVRlIN+fsxbAyMLCTpqFs1hcCBUURz+lqglDdSBKXkBNKEXlmSVQqUSwN+DHLpjVfee8uqDFN2fr0LZ3mfp4Nz+/JzW05YnnX+r54mc/f2tmT9eLP83/+tvfzp859ZIhk49QO3obryMbUrUawZF14KxjvWPMcc7Bobs1gQfEa3yWP8iP8byFN4/aTIi/h4QMPJYcN2i+hKpbqlp5iqekh1eSGXwPeCfS4Mv/F+xozLLbBa7zVuUXxnw7qP2wGX1E6aBSk9A+ZANkE2znbKRYWGwFVV6wn4fP/q3Ohs3X6+vrdTWbJ4gQ/zi1U/xov7aaCD4hIRDLahcYsb7eYqwP9ZrNFjfyC/6YX2MkJyIR2rPioIgFsZ4WRBPZ26i4RxwTz4lm54hlt+V5C0EsGOh0+4llwIxchPPYCJgGOO/VUTm2gVzBUxQ+MBgyfba1EIVj1zTUXSwa+5OxN6MgnR9NPPFRvvpJ3HwEHoK7vw5HHsdCXjPuaL6Fz5QoSsnEE3gtK9k+2ylffZ1/AcXhVc1pNUmmahOxUK94IsHov/8vF/RdCWhMdCRWJMjWxMnEmcT5BLc+AX5a1UMrOfa1IXHEaDDZE+EE/sG5BBwzQInRl7WTQ5N9C/DskTemsI29rhvdnjFeHfsP6AcSsCGxNYGNiqk7H9NfTgDrtjVBwgngEnA+AW8ngI1jVKUSmFauZQB7E8TotWflHXr3JOzLibcTeG8CUok+BulPYFbzfoKwZ7aNDQl+2oUEHKFrxAcTICfYhjcYw5mEBOWmBMQS9YlsYjSxJzGWOJ04l7AIiRh9HU9wIaeztIsUvJpR5tWUxrPRACrJEsntzVoHKM24rIAKIcSCb2OcbcPZhjQ73oFJyVsUz6mibC5KZeO6Y+gKiFHDjt+XUJqvCzC6qMfM7CuDLn75wguphRvn1nWWTq0TKkoTtSW2zz9/P8/tIkunVs5a85W7WuyW4w/Y7NGZKzqf6bn4WbyuLs5kLUFLqZ31Ey6MGlEXWgaPacHNc2DJ1FVT8dQYNbT0qUun3jH1kancVIZoK63BIWqgNrDQicsi6HIVrapkVU5mVi2xuHWR9Yu2WJx6rIpCmLvKG6aYEhxarCfLNalMT7Kv8mR5MrSDYqtT0UrKdEXp1lMI3kbAUSbEVtTX0wdaHzT2QawP+tjc3mWD+mgfbOiDwT440nesDxvV4Rt69IN9wPVBO9e3te9QHzlE2072nenjWPvrM3XdKJUZhTKVNkrNR02CyxPgWF99cbwp7hK9VZ1bVh+CkCnRkOZqSFYva6H+XVRP6+SgHXS7bp+dzdYIs7O+0mK0ozXNIsfHG4SznmArGNex7CKWnmmKXcb2F66kCnqXBYKo8qBu3Nmc0ZMy+VkqBViEJFX4IKpvIMXsfRNzdc3Us41fCQoxOmieQpTmikkpF2wOUhjSWJGIM++uEF4BIyx9+UqIrPreG9U3lbYTvQnE/Y8rm8YfXbuvv0aqU2Vvuqb0uecab/2H3tJpmQrrzxO7yuPVnV35vYGE5Aq2Lp/Xu2VJdf71u/oC6flNzTdMFcX6+XjLCy9aTVs8ka0bZj54a1tCXVQfb2tuLDGFa5rLD8/7yYLNC6tNZitZl9pTcc/Fb7Vq3nSjIsltNaFE+xLc+uBIe256JDI9194+0B5lOr+NyuCbqAyWUAX6J22NzfclHz7EHeGwcau23bPPg+9IwtOlcEfpI6WYdwac2CKFYFHAL/lDvQG/nz3E3fUBCARKet1VQhVoVeurTlSROPRmTWDyo8F0fF0cx+Om6KB5wEoCVAqHuOJVevtZ5l7njGt06skw55rysIce0I6UgL67g6eSmOr7SUsKXRbIVBAXoxJmFo+wsnBECjzGCXz1/YmPnn8Fz37s28P1dfNXNMHaL+eP5neArWLhSO/Lr93yxRvL8fw8Zyi950qUhtzWm27YfMsMYeJ3YQXPhwezd84qnfgf8a67GX4uXeQ3UvwIFD/3aT0bJdjoA7sr7FrrIjlyF8GtZC7BdhIm2BrGYKV/CFyojyqpoFiFqqBdq4JYFayvOlh1uoqYe7NUtOGEPGAarCCJAcdgmCkkSs1G4K6giVjIksmf3GQcpri5CCkQGBcBunEqeMtZtYEM7tCip3687Uikc163PPKvG5on/vISOL9ze8/X8xOvtu54eGPlK6+8gr+6998f7bjwAMYEup/4BanufO7iNw/l/6UXMBQwQXUVu3O9kbyDKtFdWqXF/IgZW5yP0DO3AkjU2Svz+SqrUTWoWvVo9cHqE9XnqvlqI6JSU6cPVL9ajZeUrSrDZfpm204btoWyfrdQWb6Q3fIYUXhjk7nJ6CS1kvpZXLafhanJFQNCDHomhe3lqCW5sURftKzm/m/c3Tj7vn9evnC/2pxKrm6deducRGT+Q7eVd81uC7b6yny22aNvbRx9a1OLz5H//MVASXrF02t7v7yqhbc6zHR/1MY1SXR/08nb2jZOgTPKeQXzSkBJKoRrhDON5xsx3xhoTDYSeyV8WnmhEh+t/LASV8aoZLVXwadVF6rw0aoPq3AVq+Eq4EzF+QrMVwQqkhWES8IZFr7kk4FkMknsQfg0eCGIjwY/DOKgMYIIn4oXRHxU/FDEIqsxv3np+5rdFtHB5DHFTURgMv4EleDEAxZikbuqq1tCXSbfPh+2+dRO9V4VV6vgV8Gkwl/OqPA/VTiiHlPxCyrsVeFhFTaosFyFHgYgqhW0B/dnFY6pJ9UzKjmswiEVmtQl6io60D6Vl1UQVeBUOK/Cx+pvVHxMhX3qGyreqsK9KixToVHtUHGFCl4D7PufFaY7qZIXjQm3qzCswgoVsirMUkFW6QEWQCnkr1Q4qcK7KqjMOQy+elhfpC5XcQdbAgU1VoiNtkuHXtJfUA+r+OohlxTHK6xwP1vfZyo5pLIFkH0qbGUg9xrjVahNKsaqV8V0I78p7Be/wUD2qpjt916VTE74GVvVGRW/ayBjn4Eutnw6TD2bya/KKrnjXBFqA50Oa6yerYXQ4U+pMKaOq3iFulU9pJJsYZUdKhEmMXmCLQBeVmGPscg2da2KY4WhcYsx6qB6UMX0jDR2lHSLWt9euqkz6nmVG2WHt8GYs1GFsDEmPedxFbCgZtX16qg6pvJuFSwo07W+BVALtLRmp7t9Ibk6w7dkK8WmAAv7LnIKqKGhrhD0Nu5F2FcmU7yMZoHvSSf4itN6vYd7dfXA32n4Oy5z6lqf+WqAv+086Q6fpCKPGd/UcWJ+L8qlmCIeYv+Fv2vfjMC8GPy74Xnx/3GxWXrDoh55zsayWO+tAxXsJm9zfvGj3YtL5sxpD3gey8/atXhx6Yw2xftYfsmmTeArhPAbW72VMf81gfxlFpuTa5p55d0I7EuXHUqMXqA+1OPku8yHQi98s7G6o7qnmhiS0jm7U0fVQjWefrIaWM0bLBOr8KhFqHd8uhqOVB+rPllN6qupXUxBY9XkYPVYNTZAvNRf9qN9kfW2UdseGxmjfjmzsOIVus2wsMSw/jzz2MBikw4khKKrVnDWWO7PsGElGcHXlGEIp3J/68B5rnfoHqeO3BWHrlBe8369g4d/dKXVaECT+Qbcr/n5VA7foQVWlkKgLFm2sowEQsnQyhBJBlkcyUgWYUkjWiV9EISKOq0OSvrqqZeLeRao5QMDNsRS9GxcRUV0ALENZtIF698I3ha1S8oI0fPl8hRQGr1NsmG0+a5XLe2QIS5CTIfyl167Jfca4Bfn3L9uRdo0K9L51uDGb35x9qwvvD6sDt16Q0lypqnmzvu3+2/5lwvPHQHLN3qsLq8tf+pfUmnty2e/sf+XT8wTSpP+7+ffcQS9xXjqTqpPz9P9tqFfay/4o3K0MUrsPkhBG+ASAFtjSSPemobtUyAwRZmCZ9YAF/KHsKXaBzYv2O0ucLCUNuyORCNYiEQcvVNnoBnQcnrGuRkYzTgxA9fP0GhBqnoDdMJAfUALZAOcJbCqCnqqYEst3FsLPbUranGyFsRa2CnAPOF+ATuE2iquxDzQBNDkSwyUoChEoyXcZRcqbRjHl/nWCDenhUkDhWKbGSgoZ+juSSvFuDLKBAtmytW5GVdrc9PlS9ZdMxO+jptuqZ2/fq4847YvbvvibTOmb/janbcd7p6ZqB3NzlvbWT7jtpFtI7fNaL3nGxvV+9b0xmH1v4ZScV+1vnya3j+zbkrLkpHcjSPL6ks8+d8fitXEmrtTM5fMqE239W0ZzO1b2+rwlzgL54Ao3SHyCnJBWIv02tbYvmQjvWgNwostKy14MVlJMDFxIoetVCEbUW9TsQSqoF+3OnQr87Rk+mArRLqtNr/VasOwyGK1FHMKqfFnhYgB6HV6dKuV2OwoTGmdlCOBKvbxb+qDOhKgiz1rnqpO/bQAR4RjwkmBHBTAqFXKyinJx4R6gXACHKKNeFQAPCisFzALatgIyTp4t2YF3rrSiv+XFayAWRJNhgpXI+AJ1OUtxjaHWOAzVQxt/N1YIzWumevTX5Du1sm0vUKkg7yY3zEv/+AgvPEEeMH0BNzC8vWKuXqb8C4jcgiolzq0uymNl6MRbXEyArz0hIQtDm+pd7p3vpfb6YYaDvx+bF1XUl5eIiNZk7EmD8oH5dMy1xjvoM5BPdYwxtZgfLcXkFfwYq/Xcc+OIARNOH4vFEJZOeYaMN+AeXp0f4X7bao1GCFS6qNkWA1GuM0Q/G5IeCZv9TlznOy++P7Kr+1YOTt+7/ZIW1Pam5g1//ElP/t5Krth72sr8OHH+5946N7RvbmHH7G6fbZDgL3SN19a9OhDD25/ss/IXf2leSeLVeEPtcNmNwRd8IATljoh5YQ7eAhh4IHaazwssjvsvSbebzLxhRTTW1iKqcNZSD7tLRAKwCLBLdyCwE/xt90BZkelo9mxycFZb3bf7sZN7k43ZimnlW5im0wmReJ7IrwtwtdEOCDCThEqxCXivSL5WPyNiI+Ix0T8olH9gAirWE4pdIpgFSWxWiS/MnJH7/zJL3SWZoq3i7CIJZ42ih0iEUVKPvBnEc6I8LEIh0Q2FNks7hQxHaBaBFGsoNNsF98QeasIX/+9+FdquWr//FX9ffEUe3r6WZ1OuZrNt0TEFWIThSRG0uqexwtJq8kdu3S/CCYRPhPhpAhstHdFskyEblYr0i5k2Oixdl0xzXXVav0tER4WAdaLsIL1OiPiXeIB8WWRrC9kzGJNBL/IdmHMptVSvbpLBBYNxBytxa3nGb7eZ29+ca9I/OIGY3MnRd7ooPiDelhMid0iMREtUaWnSTtZQKgrB04CRHOE9GpaOp0ul2BHpgGvhbgdDkMFU+DixYXfAZj9GVmkrpDe6OhwYAdHycHHeJJyZcrQtJNJBw3pTDpjWEopSsapoaIFlJo0iwaGhxk3Fo2llAFQUNPX2GnDqestNeHdKym8jBWuu1K4nukHLvenPH8V22eKMU5/fp6SP5Q/oOQ7NmL0DrTD6jq4Bep/CP/G/fHz/ybPXFzBO1mA8+IC8sLFfvIafWayYDnVd2NUFkxHY69vb4ZGJgvvoSo7FaOq/FEv2FjJE7C0TeuehqeFtyugrIsNhNeF8UhsdwzXhmOxcC2xBtbdi7ZTO0pFqsZsYWYwn1a5mLXeqlmJdVr4ntLSBgGlhBROpZL3NJiFe3hmEWE3tYdsvHQ5q7AYT0ifZWKDCo1f5FiwKG1Ejs7mPK25wlU+C/0UUxzIVSoMp6l/rcJkRMeQKaSYKcRiP2Pa5teGbvtWt31WnXfa7K5IbtOcktobbm/bvXvozvC03OzIjJZ6KmkSnfN7pv7oVLm+bv4br8Bdfbtvawz5oOTfbH63dcpN93TceHt7GbEssppGH555qxYrSiCrYDe/8NX2u3pa7YGXWLz80i/5MSqDXKBpL3bZYYVtg22rjXRycD/3Jaq5WCRiM9lJ8EoCsynlwiKH3XELJn7q8dtt1kW2Xp7z8zzH2WjjBjvLLSGr7MDZWUJmj52z23nH8xg2450YD2Iq01owtrGYhhAVBgTsFtqFBcKI8KrwJ8H0iXBJwEjQqFoaE7i2g/R7XCAxYVTYIxAknBBOC+cEjmm012vTulEKfqPU3HaXblvHA88HqD3nNn5sIFcZPzZ4QyzTiz9U0DxUg9oJpvKPH3CZCUcYQxkKztvKzguED3K5hslcWpZM+0GBpg1VR8tMztB1KeHaZPUh5kFAwHy1quPHHp/4dWbikydx5AjsgycolpWSz/+7SOFJcsqIjcxDCC+n+Lej72jNqNfPy/xe/hDFJ7+VPhAnv9456tzjJB3OHucKJxGcMSfmnHDaec6JjziPOU86idNILs6ysO24dnPHXH3QyToZXXC9Ezin3yk7SRvnbHR20EE2OLcaHc84rSecp50Ys0HrnVnnoPOgc8w57rSMGsUJJ2c3DVD7gB8ghRuOsw1gZDUZOKFyxJAb6et/qkHR8MYrE7975RUceiU7GRBjtxZGDmN+PjlFfoIkVIO2aL129y73ATdZWb2xGpcQsPvBbgKLLCEzxM1d+EoWX7YWCjl8B2u5K9l7+n2eRzx4ATXbq7IgCnZZji50idic5cPFBTP3lHmmxTgYS0aihstkKiPKQWbSs2tqdoGRgV+wL2EySFRIZiR1nXfkhx7iTHXbet/5t8bVX7kzs0nJpxKzblVDLc0N3pq7M1tHyU8+/xbLOAK+4uaaRP2FP9zz1kNzHPZ8ctWXcymW0ofPsmxGJtNuzL8DI+hHKIhmHLHuR0/y7PDiFo/OU1tOGGQZqKZn+a+us45Yd1PZNOhb7xv1UXJlZsr5s5BL546lJoq3ZGbFkCZcMfsORuJzN9zUt9gfSUT8HUppY2Voatu6/vmhG8p6mr2SzyslS5taA9Uz2DqSCHHfpfQXhP/SLrFQbNJJbJYSC7a6Jci7pQXSgDQi7ZaOSp9IlyTLuUKK7IcSWS+BW4rSdvIhbfqTRMYkeF6CUQmiUpp2IkiCD9ZJr9Kef5K4LINOS+0SuSTBCQmOSnBQgnbafYR5tzBCBz1Kh70k8YMSLJCgnnWAZ/9kQKeldRTuVYkTWM8P6YCXJG6PdFDCIxIMMsh2CZ9m400ulo8Z/dfS9X5oTLVbgisrLtTSBQ/Qgdl+uHpJk7C2IyoBXfYnbBtjEh5gb/USbqNrPj3ZhSFkt0Tq2YuRq1QY2YA1spTOGQOMG9hgyU04Wtg4HTjrGHWMOcYdnAMP0GM9av3QylkDvdiJqMVt9ZNBGwngATTJbFTLZCA98YOc8INr9PLf5gdcX3MlRHK5vf/KAMOFi6gcI/tCNpknztwpkmKRcGj7KLPlcDI8m3umI+zt6l83bepHlIefdFh+CG35d37ImXhyYW1YKfDzmkv/QVqpbo6iDP6udmmN52kP5tmv6GL7Rmp21zxfQ2qiqIYapz7LUyxpDPNSQEpKxEIk5YICv1fgFNXW2l8v6muVB5RdCmlV5io4rKQUbGXNf1UwBXhPgbcZ2G//k4LBMgXalG4F1ykQVsCpwKd0KHxc+bmCldEfn9LvUh5kTz/8SKdtJ5TRH3yof1s5ruCXFXhKATYLzil3KXguHXL06Pf0CWMdbyvvK6cU8qzyDQVvVnYquE9Zq+Ab2FxQzSBfGdPpOg4oLytvK+QxBWBEAQNGGT34T7pdgec/0X6g/Em5pJD3FTiqwMus1979urHYtLFYtwKX2HrhQ+UTtqC3Ffy8ArsUWKeMsBmhXVlAB9S++JD+CR0KFwbapbBZCZ2P7n6guPuoklYwnXWdsXtjPEVbuVpfp0BKaVP6FOJWogoubutVhr6blugLFLArYQVfmtzJpwq3VYH1CvQoKxRcr4CsAFIEBauK8SPGlhn6CQWOKTCmAGYNMUVTOESLrLJeGVPGldOK2QCtTjfQRcMeBYylIQUs9T5w+8AXfRZTdzJ9IOnzeJzPilwhtDLxgaeQW1xw9lOFK9UrRqjhbBqm6tXhvmtzaFIFSk8Vfyx2uS112aJNscaha6OIKePujpmrzNXLZI43pFlCNzXXEqRZJddkWRYNMzf4rg9fvZkt2S1Prw1JLbfMnn5bIjGr87Gekyfj3ffd3HrD9ZEs6Icby8yJ2atvmLtKKysNHMr7Qq98tXPk9m6vc+Lz6/MY/g/EHMlIAHicY2BkYGBgFHy9ccP6XfH8Nl8Z5DkYQODi7f3BDHDwz429k3URkMHBwATiAwBjEgrSAAB4nGNgZGBgV/znCiR7GSCAkQEV6AIAOXQCLwAAeJxjesPgwnqcQYTJkkGTiYGBAchmYmFg8GNaxaAJpNWZZRlCgLQIEEsDsRcQMzD3MgQAaX0gVgSyPYBqbwNxFNAMkDpJIK0N5DsB2VuAZrYDzRQH8u2B/AjWMAZrIN8aqM+PDaTOkmERUCyEpZihE2Q2EEex94LdkATVB7LTC2iOH8tjBlWgviwAzQIaqgAAAAAALADIASIBIgI6ArIDEAPsBIYFHAWYBhYGoAcaB6wIPAjWCVYJoAn0C/IMcAy+DPYNKg2eDqgP7BB8EPQRZBOYFCQUnBVgFg4WgBgUGMIZghn6Gn4awhviHY4AAQAAAC0AWgADAAAAAAACABAALwBaAAAECwY5AAMAAniclY9Ba8IwGIbfaCtswo5el9NOWlTYZYeBIiJSpai466pNNWATiXXgcexHDP/E/s3+z762wV16aULK8z28eUsAPOAHDMV6pFMwQ4umgmtw8Wy5jie8WHYo827ZRRMflhvkPynJnDuaXvFtmaGNX8s13DNmuQ6fNS07aLM3yy5a7Mtyg/x1rvlWHy9G7vYplyrWJglTqRWP9VlF3nCQrY4vN8LkfimMjBc6CdU0EFF44MFo3J+sZj4vj5bbtTCn7Cc9r1sewBwaHFv6HnGBgcQOe6TkJBRi8gYJQjKSWJHP3JkogochBrfdgU+ZDQTd+M8v81nSrQXNWZPCFAHZiPhAfQFGGKOPCVaYUQev1Folu87pdHtJj17QrdLwB4ZicgEAAAB4nGNgZgCD/4oMKQxYAAAjkAGIAHicNU9NaxpBGJ53JlH7xZiWSkqrkxxCaxeqdCnkUHAJZTfVg5vYhWjAtaXnRJgmV/ei5JJGArWkEdqjN1e8eLC6/yD9AdlG6LEVba5B7Kyhw8zDw/Px8k7rRqEHfgQoMcM+zClZGEzgbAJLEyhdgX4F1mX1Ev8dR1lz3B/j9MgcNUckPgI6ggAaBof6sDAsDr8NfTfpH7iNfsPCr8Equ5Bd46d8biAXXuqu5dou6UwdJecGbqkuEOOchFjQWXLiTtGxnB/OwBk7AatX7eHv3RijXdbFrJ1ul9qk0ADaYA2snxZOcbUOtM7qsTr5cvKMnWgR9rn2mA1q4xr2xr+o3VlQzU9QOj46xsWKValWiFWulnFzv7+PuR5luzsS29GesgfyouGXieEjU+Y1X71beaIWTIWZIrSdi7OcFmX35LvGvFh2TgQpYSRB0mSXHJE+8Qc29QjbEG+gj3VM0ywdS4sfDpS3qWUxKFlMWknyWo2ydW2VUY1pMe1Mu9BGms/U4Ku4alPtq0RRozFVUSPL6qP1h0ZIvm8EZWpgQAbIyIjRKcWUmrRECUUJhK0QzEMHqq03GUlKdfzTzZQd0LdtOLBXMh4qGznbd2AjI7e91QL4mC0fHqK1cMp+ntmyC+Fsyn4viOIRS5BguBVCa1nOP0jeAUkSdE8gkvaElOfXIpL+20jiwDniHCTPm1GhIC55sqd4HRDNPEceeK40S3mM88X8P4br0lUAAA==) format("woff"); } All work should be shown please!! (type on this paper and not a separate paper) 1. You are interested in finding out the spring break plans for students at Reynolds. Describe how you may select as sample using the: a. Cluster Sampling method b. Random Sampling method c. Systematic Sampling method d. Stratified Sampling method e. Convenience Sampling method 2. What are the two main branches of statistics and briefly describe the purpose for each 3. You are interested in finding the views of Virginia college students about their dating habits. a. Describe the population of interest b. Describe the variable of interest c. Is the variable quantitative or qualitative (support your answer) d. Is the variable nominal, ordinal, or ration (support your answer). e. Assume you collect a sample. This will give you a statistic. What would the corresponding parameter be, and how would you use this statistic to describe the this parameter? var isIE = false; var f1 = [['t1_1',1604],['t3_1',1616],['t4_1',1010],['t6_1',513],['t8_1',538],['ta_1',588],['tc_1',555],['te_1',630],['tg_1',1121],['th_1',588],['tj_1',1708],['tm_1',694],['to_1',641],['tq_1',1269],['ts_1',1295],['tu_1',598],['tv_1',580],['tw_1',320],['tx_1',1620],['ty_1',308]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
(type on this paper and not a separate paper) 1. You are interested in finding out the spring break plans for students at Reynolds. Describe how you...