4 At what interest rate would you need to invest to have your money double in 10 years if it is compounded annually
At what interest rate would you need to invest to have your money double in years
At what interest rate would you need to invest to have your
would you need to invest to have your money double in years if it is compounded annually
At what interest rate would you need to invest to
have your money double in years if it is compounded annually
At what interest rate would you need to
At what interest rate
4. At what interest rate would you need to invest to have your money double in 10 years if it is compounded annually?

Category:
Words:
Amount: $25.31
Writer: 0

Paper instructions

4. At what interest rate would you need to invest to have your money double in 10 years if it is compounded annually? ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:55px;top:58px;} #t2_1{left:70px;top:58px;} #t3_1{left:55px;top:74px;} #t4_1{left:108px;top:105px;} #t5_1{left:173px;top:105px;} #t6_1{left:108px;top:120px;} #t7_1{left:177px;top:120px;} #t8_1{left:108px;top:136px;} #t9_1{left:198px;top:136px;} #ta_1{left:108px;top:152px;} #tb_1{left:189px;top:152px;} .s1_1{ FONT-SIZE: 47px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACJAAA0AAAAANNwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABNAAAAxqIbTu3Y3Z0IAAAAowAAAAuAAAAOCX+AcJmcGdtAAACvAAABRIAAAp127YujGdseWYAAAfQAAAXFgAAIVasg7pXaGVhZAAAHugAAAAxAAAANq+zQCFoaGVhAAAfHAAAABoAAAAkBgIFDmhtdHgAAB84AAAAxwAAANjQABKIbG9jYQAAIAAAAABuAAAAbtaEzZBtYXhwAAAgcAAAACAAAAAgAfILaW5hbWUAACCQAAABFgAAAhOXL44TcG9zdAAAIagAAAATAAAAIP+cAMJwcmVwAAAhvAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nOWQu0oDURCGv9WQZJOwSTa7m00298TN/UIuIjYiqJ0iIvaWYiN2Vj6TL2EnWFpa+QSCjXKcZCOxsUnrD2fOzDBz+P4DbBKcAppENiypJNNcQnxKo0VFsqjELQaMmbLNDnvsc8QJp5xxwRU33PGgvpSSjQoNeox+TR5yvJg855JrboNJ9cZC6kl9qHf1qh4X1bN6YSl1H7DgC0WPleZ1cHfY5WDZrQufT01oPfLC0KYpDC26DKkSJ0cRm6Q4nRAjwQwLFwOTEinS4jFDFl08Ov/aO1pYXtRC4UhUj8UTRjKVNjOW7WTdXN4rFEvlSrVWD/vNVn3Q7fUHw5FfC828fENw+z+oZSIS282gms4/skN3WF35iOeKdrIwiQmL5RqmYKSjmaw+dlhPozX3/tA3zw9dnHicY2BAA1sZOkGYVYmBgbWd+RIDw79t7PP+3mI1/P8JyH/4/9O/hSA+ABumEdgAAHicrVVpd9NGFJW8JI6TtLRZKKjLmIkDtUYmbMGASVMptgvp4kBoJegiZ+vKd36Dfs1TaM/pR35a7x07ZjNtT09zcvzuPF3Ne+/OmydxjKj0KBDXqAMlz/pSWn0opc6juKZrXhYr6ffjmmwmnpIWUStJlMx2BgdygcvZjpI1gjUynvVjdaSybKCk2o9TeBSfVYnWidZTL02SxBPHTxItTj8+TJJACkZhn1J9gBTKUT+Wsg5lSoderZaImwZSNBr5qIO8vBcqPjmedQuNGmCkMpVhu3ytXM924rTvDe4lsU7wbPN+jAcesx+FCqRkZDryj52CE6VhIGUsdaiVODocSGHvSNx9BJRSI5Apo5hVobP/Z8nZU9xBNtOElHTLZjU9ZDi+ziuleqo6mR5QRVu041EYUR7Cn8SXYl0PtoYvV0xeLnfEHWwFMmPgUkpmorskAugwkSpX97CqYhVI1Sg5ZTNUSGgfsWQ2SlWW4jxQQyCzZns3zqfdrWRF5g/1k0DmzPZOvH1/6PRq8C9Y/7zJnbnoQZzPzUXIIJSqn4gTSaEe5jP8qeJH3GUIU6z349yFWjieMIPWCDvTqGm8doK94XO+UqhbT4JKesi/B+/Lyr1Bz9xxFjR0icTZOHZd1x7OW8iy3NmNHZnToUoR8Y/5edeZdcIwS/P5si+Pfe8clHkbxLf8QE6Z3KV9x+QF2ndNXqRdMHmJdhGS0y6ZfIp22eTTtKdNXqF9z+QztGeMVPx/GfssYp/BOx5i076P2LQfIDbth4hN+xFi0yrEpq0hNu05xKbViE27YlTb9kfdIOx8qiJInUZWWTTmSqMWyKqRui919Oh5dGBPvUFUPWhplT2I/5aBrgjkwlhpd1nON8RdWrPFffyiEC8/ahh1zebpG0eKEzbHtZgYlH5n+XeHf1sbupU33CVUYlA3Ep2cJ3pz0AokMM3T7UCa/0RFH+2DfhFH4SzXVVP1eL8h4Z0s6+keLmm853GyYI40XXdpEfHXDLJCj+PfUmSq4x9mTa1UO8Nel54/Vs3hHlLikOr4SlJe2c2d+GlBFZX3tLBaPJuEnCoVTCdt2bqLCxS9ehtSDo/hvCxE6YGWYjQ4wONCNPCAUw6MV98ZICUMad3F2WlE6KIuGBsF+00Iou2IwpOU2pfRSOXXdsWOrKhuk8AvJpina8nzWDjyy9RAwVNeHWmg25DminVLBfdEqa7uMRhP66qVjAWMFHV246Zq47PCjEdOxVzGktexujNs9c6+Hp7SpLYdHYtm714bhY9OziXlB+3V+k7Ocd1o1aRkXQzWdtLMV91F3LrrY3f/RXfrZfZEzg0ja/7ETW8aueRnCMxOQbavc3AmTVkF9da4vU6kZWdp9HkTN2S4XdvwKxP+hz7s/V+tx/Q5VNoac+OFw64loxxvU4yT+jdYf02PBBjVMS75E5S8NLyZxw4v4UJTDC7i5hv8n2JGuYsLEgCHRi7CRFStA11VF5+iE522DHtRIsCOOXacNkAXwCXomWPXej4DsJ475NwGuEsOwTY5BJ+TQ/AFOTcAviSH4CtyCPrkEOyQcwvgHjkE98kh2CWH4AE5GwBfk0PwDTkEMTkECTk3AR6SQ/CIHIJvySH4zsjlsczfcyHrQD9YdB0otf2ERQuLgZErY/YeF5a9bxHZBxaRemjk6ph6xIWl/mgRqT9ZROrPRq6Nqb9wYam/WkTqbxaR+tj4UjmU4kr/Cb8fwV/jAfgzAAB4nI1ZC3Qb1Zm+d+7MSLIsyaP32xrJelkPy5Zlxe+xJMc2dh6K7SSK83Kch/M2JkAghCQE0oRHSEgKNKVteLW0pCWwC2yhp+XAdndbSktZTvdwSmmhPXt22fbssj27ZzdYyv53xi8S2q6Pbc3o3pn5n9///f8gFsUQIu9xO1AQtaJO1INOvogwg3Bu8LJv5VqpGREGMwRPIswymN2OEGIIYsYQizg1y40hjYYvIp7X55FarSoilUqnKrikpmsv45EG8ZrSdZcvXFSSdD2SIJgjoUC9u67KHjN1kXSTl7GY9awBB8KhLjbTHAr49UzAHzY1dzGzi3CaZLAoiFn4+8S+JDcU79zaH/bEmhtEVrhVxzpjmURtb0u4JezUOqo31XjCNmvYLQjusNUW9tRUvk2+M7OqifTOvMouswQ9Nf6uUktmqLU+WGfdeqPYGA0lsuFUq2ARLGWHNeIRBE8ELpRvwE5c+VKGLSN09SoKgB1/zwWQHzEBakHyMUIhKWDGiMU5DiOCqVlBc7Y6jxhGxxTMZlEICLwPPIAwWvhRvcBhrndzoREx4BPEMnDXGmShdzP9hbvV8JYYTlvMfAzDrUV/qAHjNGnOYpEUvm8yfulc+U2zkxWYfV85x1cy+If4l5sMlsozeK1FGCHFytup1vIRWZsTV/8DH0b/Alox6ASIRxCHnJ9uRkbJgDBGwyCmBRUiQcatSL+HPYMnuJPIJO+Ab4Zhmx521DFCDM96KTPrNTxhDiQcjrgIMscdjkTAzGkdCXqWcDgTfrPZn4A4QWrQ/QLnRzpkRXWSaMIswTmIHGqDdYiQ6jwDZtOhgiAETD7OHBMD/lCYiESPY6A26JzEYT1WsRcesHvUU+WP9vOi7QH8h+9WXsevv1Jl1sCv3Yg7Kj8UnJx/5u8YwS4FQ5Kd6uO/+glzL2cAbw5ISzUYk1rM8T6MOJJDPOYwz02C2avzLIa1IghjyCOOQyMqLBsGI4/LbjUZhRqDjmeRH/vVhhjnD2UEELETZ01duB0LokUUzNZ0E7WKtRbrMX78xtunDJYLUcZSsw7rKn/Mxp1Bp0mt0XLNidsNd93GjJhNS804YTBWnj9a/puODr1Rr9aM1CepzBaEuCfJuyiBfJInZFMTAmkMaYiQAeQkREcK9WKsg1rKBA+0mbzY1jUry+xpi3KGIcVmjUcglCz3md3sc1V6Tm3Wvs45jUNmB/d9rVGtNf8V5zTdXXnrfkfVW2otx1Wp39a67yHvWA3lM/4en68nwBwwmEyG8v3+nK8nz0zVmGeSInPOlrDZkrbyPlGOnQchc17mToP8CaneTBiGuhkhgBRC5Diy5TmWkYNcDjtLwAJpY4qlhbTQhWUYgGCn2MCrhAcvd35xy8rbVkUvb9k2eLSFO11+I7c8M35quHyW2b/39v7uciONrZGrn5A15LcoChl2StL6ILYaWIZXMYB7fsC9CGIJQ1gGvIxUPKMaA1m4YXCxLa/BPI+GsZqRY88lxf/0VjWNT/kCWQ8LBpRzxuoxakzVt8Za6/xKlFSpURRHqwwxOWH1ZC5XsvOAB1/PaRpsogt6YjF7GaJxujlraGDl+mzrxGCs+/Tvvj6+oWu0K2EzOtW+4qvTq46uTlQK8Rty7Z6bn9qRdNS31TjGAtmQqbZnPNe2eyTDDk7f5Av5jPoly5dltpwcLj+4xyg2en/MeVI9kVA2IAAW7AMnbeOOUWSDQ5qPFN845n8pIkEWkGHQWC+nAmSBbBXQ1aTVYBazRs4VAx+fg2vy5B1EkF2yMIt2wn+CiEBqZMTC+cvknZkkbIRr7qdxQT5EdjT0ko2Xw0JxjgmeBx7ANLDnIsMl2RA9vz5mSlI1rNiRPWAJikrY0Gy7LnLu32myM4bux7ZD9NRfntg2eFcLeUcwTS4dXQifvu5yitYwNHj1P8nzIFsQJVG/1GvDctASzGACgcADYPJ4TI0BEoYpJNgoSLPDANcWthAOYVQfDSXDSY/LbDToNCoUxEGNIYblisYHRC9ZAIX5aLCBkGJzkmFsax/e12W0l6eZZHGqV9qYTwraGr5JLG3fm9l+6fDS7luf3XfoQSNj8UsbyIdtU0/sjLrWn1qX8NR5NGop3Bo0Fu5548j254/fcPTM4faJvgjY+jgo9QTkgx3dP3g5ATbWVoOPwepgxJyLnpG5s9LgZS91AijLzHsBs6yOLbiUaxVP0PU5V8wuS14o/5At7OS1vlI2lOZ9JdZd6yurTcVDItB8UAnHt7ltTHXi7g21LVY9cejTtYnebL0RkMd5ZnxKZ7jLoXVlhhrLD9M4WgpY/j74qgN1Sm0dGHMeDIrkaFWDQjqJCIAjUBRYULIWvMQMg78sTKFtSTjo97kcAZGHMsZTV1ABIPd4hXqEwlklkKjDMs1JXqlxVhvzjWq7IdCYT4a74vZIbnTtaC6SLB0fHf9aNqq2Csa6dH9LMh+3RnOjpdFcND5yx8qx880kZbU6rNZQ2hNqqvN4I23D7YWbRlK5TE6nd4kuZ6zNF8kE3bXhzrXdrTuWJztaZmPxD6CfCYVRXIrKycHKQcfNuQCQxwJMpNZjDlvCWg0yYRM/F28Ltdmk6DCnIsN4dl862NNz8NLu3d++rafntm/v7tvVFwjAv/7d9HM3+bDv+Cs3HXjleB98HrgJPmcuNG48uWbNyY1NTcpnI5Ix/jDg7TOQ1jSXDSqgLvO5DGk6iwbMMA0ZJZfnvoVzuiRDjIUs5HJQNAUgPrBcP1uyUAlkkNRjWRcBJyB/j2Uv7zLamZruL8spTd4pn913W18X8/OZ5HxaM/sV+WR8gho0j0/6P4VP3Okr07AR7H4D2P0pOLShEJqSqs2YY9wulrAcLSJ1oJtHxkWIKTmcbHkVRDlkDD9XOcRr1nm5XNBdC+XC6rBj5PPaQ46Q1WKsUfPIhm3quVKBF2iV1QZGCFJbJOFbXi4P7YBoxq6vTg5/YXNz654vbynd2Xi5smz4UKZhX/6eM2LXOsF08+D6njtfvX3PqyeXt2cZz5XpI8t68Xvd6df/etPJNVHZNtrKS+Qs+M6KXJJdz8nOm4dwARXifj8xxjBlXSZ8LbHAX1K7nMefqdz7qM3O/05t4HiD+le8W7i/8huzFd9NHrXqy49Z6i3WmIXZYrDQ55nA5PfC84zIKdmq8GceB3aLizXwODFw3aMY79cq58+a3dzPdUa1yqR/l3cJ9wEk6MunAzm/mA8w0/AA2dfch5AvMbT65Xo9TyD/Z4PRyssemuVMahVHZNbkkpwyXvGyZ6gstoXFksx3YygGrMQUCosa6zxqESqh/H+uzOgXF5xzk2YbY3B3Ll2Z2HbEZekd2dx08bnLk+Px5e2By+MbpakkrT9bxWzUum9Dy1CT7bUXaBWavtnTvrqVHt08nW8vR+R6dAZi8WOIRSsw9l2SxuU0QRzKeimBSOnUfGDZlJjjgWpRkKOBeM06T+nifGRaaBE12QHWaz22gD0AT7FEAoLauJiCzcIhgDSmynnh2xbgL2cud1zYOnpyc7ptz4XNm481VbFh3Fk8lE7uy33hzFGgZ9/tG87d8fzUra/fNzTQsyZIVg8trUQg/l574Rnw1fMQCy9wIWRAouTVsHLswZ9C/ckqJLtAEBw1rCkGDWBzVsXLPY+QtohXsUB+bU9oMvjIySvlZUfJreH6vzXrdAN4+NN1R5FstwzY7T2uUcZOr+RCs3hpzssoOtvlRCJ1cPtruxjVIqSk6E/e67/z2S1bvnW4v//wt7ZsefbO/u+kirva2nYWU6nizra2XcUUc/ZS+eli8enypUvlrxeLXy9fevjNO1pa7njzYfjMZO54U843aECYCe4O5EVZqVmoYWjAcbRgzQqnpxUKFQlWYpLjdByFKS/yCpZg0Koyg1vCSdyJ03PIoKJAoWc8mHYc35qwOB9KjBwcrG13cUw8WJ9PObGqcpV06xiruX/DyPFSQ5VmrY2zNo92rT068xqVqRfs1AY5E0etUksc5HEC41lcQynxWVxDF+gONPQRCkixWbhabLN002KGQ0UlWG3QG3yp3qbctnwgWNjc0XZDk2g0V6d9y9eNN61+eH932/4nd219uI34tVq7x57edHJ07amNjd46r6CQm2OvHtz73ROD+Q7w7wOAXR8Dr6EYvVeqdrt4wrFWzMgYTWmMZxaUZWPOB7ycAAKZTQ3DdamzeA+khgNcpmA0PMgWCYqQGqbP0MzZ7BAW50aSeYBSTqHr4uTIyc3NbXsfowCNyarDzcn9hRNnxe6xykucWzBNU4x+BTD61PKOlsoq9uJsilCIjihxfAj8087dClHcjjJSkzLCuXYIQ/ma0lixrOwnC0e9E3fXgXc+b9yiOOtz5i2HvAOrt7YtO76pJZ5b0dvIGg/q2Ho4Svpah2Ltw2111Xb9nSYx4YS23mSS23rRxP7e3RSyxVcd6L9h18r25rTv/MVYrjWbH22vzzU43AG39dMfORJ+k8kP++Oi0SjGZd0Ar8lHnB/pkQPVS2FEODpeoUMkxSfV86XaYRMMsE0nCpSu0QnInMxhhZ+FYhgPvIRvO/j8gdbOW5+76Y03lu4ZCJ5+6A38ccXK+dt2PbJh/aP7O89E+rd23HkfxD2PEHs3PFuuRWrZqjRU5oYuQtwHtUjuprFSibDSP/Pn7F4V7q22adSWalzgfbZzFdNTnN9unNlROxCJDNSSRwXnlQ9obg3i/2GizAPAM2ySGdHxyjKKA0VYwr2Q/0LMBHk7iD+o+JkHvohkRnLgqpuc5/QojbrQAJKkzt6QB9h0IawDttIGfywiOScARw80JXR8A4wbOCGlufDJjtLhBVNIN4UFb4gzxTho9meJrM2UJDQZu3FaBSqplKQNEy+hhoTQwM30tItgM92sJ/jVbd9sDVXZjbpwW3GJs216XTax7uSYYZth5N5URC3oq8WGnri9/cCGVugwRwzb8XJPYz5kzyxPOyqDjkRnwJbuT1iM2pVd7QaDuy6gwjsN0cK2Zdndq5dwP/mZVkr1VBssbjdfuSREeyYGCreMtfJvM1p/Y51LW3merW3oZGy1DQGXFrdynngLnV+tl2cKjbRnXU+TIQjMolFKJjAm0NhgQK45lgxQjzFTVPzJ4GDAYhb0uJFp5JwxhRv2wb2egHul6B0A+4j2z9wBozq/2VSjQymc4hYotooCgdhkBQjONLdAlJC57AIDQ3NPGH749GR7bGBzpvJcaFkAP+7yzTytF/AjzcNtvkDHqlTDyq54lTocWFM9sO9BrpHS64HD03uzlce11bXOba1CuAY/ldkysb21dXWr25Puq/dbOP3YfRtTci9duYIPon9GbhpjBoy752Z0OlxwOeqYmlh2UYqrwqFMc7aLZAGz7he8Mac34TU4Ggpxr06v8dY6eW26+6A14jVag2lPbOP6NUF3dU21vqouucRXkG12L9hsGvJGgyJSEM4Bhhg6/WWLtNWrziuFG77QII0AP5TLQ22i9SkgkOnyz/CvKoGXOf/5Suv58ltwI7jHebj8YTi0Uo7OUo5WnZ/tGASbaKuhcy2aiEmcUfqBMOQk5VvpP9rsBubHDLm43uLRl1sY5uImzq81z0TtDWby5Ssf6I3kXVu9aWYz3B2jsyD7Q3CkRUkptkh2rkiLrSw7W0RywwrfapGWKiBA2Z3TQFSJAjlbfhn/UyXK3IDLiOpRfLBSOA93lfGMbYMjB3C1JqlBjykBRSyUE8SSMYDlWVSbnW4iFBDdTthtT4iCyvgZXKMZSod1oPMcxAExBoSbPPjcjS3RZVN9glePx59ocFZ+ZAgEbn+2f+8NwcpvX2D85Q84f3rTF0Z6D27uNWpdpvL/BPG7VtM9wcKm1n9DczyE/BTkVNF5osy3inSMWJ1XwoZOqpEKNOeMsuYgVYb8tHLs5cpRzv/op7ew9z6qYNUq6P2+B7WpFtCqDxWkHruaoSqrMYAUs0hlSkFpjeKVISro4sOou7O5L9MXi/rSYhrQvRbXaugolTKGliy4ej5seTAGtUn4mi72uq5WNf74TdKR27fvaN1xdu3asztaJ7cfOiLd9Ph4x6acP9q7oTmzoTfqz23q7Bhttruzw1n4ddubRw3ZHQ+tO3GpLvLE1NA9E0uWTNwzNPVEpO7SiXUP7cjeFwLD9W2VvF5pa1/rpkKIeSRaKDWkRrqDwe6RVEOpEKW1bD3Y4u+5HciDGtHgiwQsMPemxU6zAyJgDHBkYfQJPSA0XXAhs2t+fWGp9FIkWB8JQuADt1ItphqKeZRiZJ6fTsg2wC8aPLrYZMfQvTs7e25+cmLia1OdgytxTtfoe6z8j/7c5q7OrX3hUO94e+dEb5BssYRNHl/LzgsTm56+vTd/6Lk9Yz+5Bf/CaJ8p5PYujyeW7+4u7BmMNKyACsOh3NV/527hbpb5dDtagUroGYVnQdmGdYLA2YhXcfyYzGY1SqetUrHDEA2ULbqUjiX257ar1TrlGoVg0tdNGoBkDTP5uVehz7uoVJJ0pTWhiPJD3zf9JX7/l9Y5+bWD3IieS63a0969d0UisWJvd/felYlTjli7KLbF7PZYmyi2xxxkj7JlZSKxkm5ZkTzliLfRLQ4H3dIWd8wMGJOeQfJLIeFfxjqKR0rJZOlIcfgu+nnXsLR2icOxZK3UtabFbm9ZU95TPEoXjhaHj5UaGkrHhrtLWYcjW+ruVja8W2vhYp5auRZc/UTGUcAfyUcwhRpaxuZaPYzMJn21ikcO7IAKRufNFE/ntKeHkERnVxxenXip/57XDh78wYn+lxKrD5/JTpxcRbwzH02/frpYPP36NBz/dtWpiSytxz54ppo7Seuxj86QG5V3SszTENXnJL0XY5UAXNVI0Xa2GW9YGKfy1dR/mmGk0ejzHEisKlZhlUqeD6ERFs/OU9L/nyvoiIV2JyOzcSCZMG5pjtfjIA6GA8FAQDBqxRi1E8gMvNOA6tAhSe+BW9SAhMIiCYOfeZ7yFPXnyBX90/uuk4YOE+pQnSKJoLEqcP/Z10SBa18kkY8uVxoyMUfAYZTfFcUP9uw/uKfG8kiEmIV15LUZiUiL3xZ99kUS1RV6e7KZvAP8ALpgiwFweZbpGuZKbMQfFaEL1ihjl7mZiwbL79x4lfLSra/yq2fMJvVPWI36WY1Z/3jlfdz4TbND/TN11atqm+kr+L/x+/rqyle0Fi1u1tdUEhVs0+FpW03lRb2V1gqpcpFcJB+hLBoE7HhEqgE7qVMCgHZ3PcMRanknWD4OzgQ/qKAJgCiCnm4MyQMitRoBSMjzdp6XU91B8aEBNFQjrJ68/rLPvaIkuZcNYTRcHCotK/Uv7eoIiHZbjR7gN4uzWsrqrDbRAjzKqqBtWI8XRsILlWmuPgFjZpUtCpDIg5HZGR3+aeeuGEaRydrMxmPLpBaPu2Xt1M1Ta1s6bnxyx44L25tGB6Opjo7eFZmNd+F9QWlk43iiscvbvSWf2760rvKb8YmJ8U0TjsYB8pHb2RPgDdJQ/4FVCYMpZgn4a1iNuXG00H3L+mx9/8Z0/1aPKZet31gbPVHqPzAc//RfA3GHlmdVzoG0uCRqdya6mfY9a0o7d5Zifc0eGhffQIhPAVb46bseO2HktpKhpAhPslhhYDIbEC0tQpQWokVtEB11QRHiYxgYijwDkxslktdZqqqgLXq72m0/8ThhKjFbzBmzVXz8xRN2lw7/Av/alnI4U1YStGiufEB+YG50zPxDNEqyTbGZHs6vsc68DyIcpXNC7jTyopSUABaF5NeGELlkjBI1fV6OCRbPvTmkA5IgNOeUqQl0aqyUR6icCosKURqljHlTERPEJav32i5W3tK7awSXHvd91eLTVf5L73AlLnOnZ75XJeDBGmPliMFRpa0VKm6DEZ816yoJ7vT/AQ6kuhgAAHicY2BkYGBglIrbuGH9rnh+m68M0hwMIOAVfGcWAxz8W8BmwNoHZLAxMIH4ADWDCYkAAAB4nGNgZGBgY/jHACSvM0AAIwMqMAMANK0CGgAAeJxj4WPQZuFjUGbNYmBg0WCwZGJlaGM8x5DDeB7IX8jAwbSOQYl1B4MoiwlDP/NVhhDGawx5QDwZyO9h/s3gzXSKoZlZkcGNxYLBGyhWC5XzYp7PwM08l0GYLQXMnwC0YyMQmzIVMkgwJzG4AsV6mbcyVLMoAeW7GNiYioH6+RhKgDiG+Q2DO+N/oPlrGbpYtRimML9gmMgSwTCZ+RmDBFA+CKQG6CYnViWGHpZSBgUQZi5nEGc+wuDAdp1hOfNihgYA45ssQAAAAACkAMQAzwELASMBTQFNAYsB5QJBAnsDEQMzA00DmwQDBHEE4QUzBYMFnQYRBkkGeQbjB08HfwfJCBMIbwjjCVEJjwnBCdsKawqRCvMLKwtVC4kLuQwNDDEMtw0nDfkOMw6NDwMPRxAPEF0QqwAAAAEAAAA2AFoABQA6AAMAAgBQAF0AbgAAAPAKdQAFAAF4nH2Q3WrCMBiG32orbIMdbicycwMt6k7HwB/EiUoR8XAQbKuBNpFYGd7UznYhO97N7C0GwZOmJDx5vjcfaQA84hseLqPDeWGPvuO4gQCh4yZe0HfsMxM7DvCAT8ctesWk599x944vxx7a+HHcwD1+HTfxhj/HPtres+MAT96r4xb9x9KIrTmcrdrtS6F0ZmwhS2W0yMxJJ9FwUI1wJG2uSrMyhdSzOE1kLuLxpD9dL+biNnK726T2WDXrRd3bApYwENhyPeAMy5/bYY+STkEjo7coIGkUWdNX7kRKEGGIwfULMWLOImeyZGbFWZ3UmPEpU+Yla4I8xoQPPcUaC8xp6rrU1TbsanG83qzHG3XrTvwDhwtYLwAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } 4. At what interest rate would you need to invest to have your money double in 10 years if it is compounded annually? PV -$2,000 FV $4,000 NPER 10 RATE 86% -- Use the RATE func±on in Excel. PV should be nega±ve, FV should be posi±v var isIE = false; var f1 = [['t2_1',1424],['t3_1',782],['tb_1',1564]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); } View the Answer #t1_2{left:53px;top:152px;} .s1_2{ FONT-SIZE: 47px; FONT-FAMILY: BAAAAA-Carlito2; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-Carlito2; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACIYAA0AAAAANGwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABDAAAAqr7sPaDY3Z0IAAAAmQAAAAuAAAAOCX+AcJmcGdtAAAClAAABRIAAAp127YujGdseWYAAAeoAAAXFgAAIVasg7pXaGVhZAAAHsAAAAAxAAAANq+zQCFoaGVhAAAe9AAAABoAAAAkBgIFDmhtdHgAAB8QAAAAxwAAANjQABKIbG9jYQAAH9gAAABuAAAAbtaEzZBtYXhwAAAgSAAAACAAAAAgAfILaW5hbWUAACBoAAABFgAAAhOXL44TcG9zdAAAIYAAAAATAAAAIP+cAMJwcmVwAAAhlAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nN2RMUvDUBSFv2JIY1oakzTGaFqbColpalusdXfQTRARd0dRRCiIm3/GP+DqLM6Ojk76K+R5m9QK4tTR8zjv3sc9775zecACBUNKslO6l9Mke0PjSWJLlpbHHnsccMgRx5xyziXX3HDLg/pUKld0RbE/VZxwxgVXjL8V6h3Us/BDvahXZlCP6m76ZjPvUiCUbMA2uzNhTFucpCRk9ImoENDAwxLtEJMqI+rUcKSPjYGL/y9moKRPPkbTy8aiWanWrCXbcevesr8SrK6FjeZ6K2pv6HGymXay7lavP4jb2ojfKAvTpMh3JhY7ZP3op14JGp4VDk1xIAYcGcM2XF/Mz4nBvBf/xhf+QU/neJxjYEADWxk6QZhViYGBtZ35EgPDv23s8/7eYjX8/wnIf/j/07+FID4AG6YR2AAAeJytVWl300YUlbwkjpO0tFkoqMuYiQO1RiZswYBJUym2C+niQGgl6CJn68p3foN+zVNoz+lHflrvHTtmM21PT3Ny/O48Xc17786bJ3GMqPQoENeoAyXP+lJafSilzqO4pmteFivp9+OabCaekhZRK0mUzHYGB3KBy9mOkjWCNTKe9WN1pLJsoKTaj1N4FJ9VidaJ1lMvTZLEE8dPEi1OPz5MkkAKRmGfUn2AFMpRP5ayDmVKh16tloibBlI0Gvmog7y8Fyo+OZ51C40aYKQylWG7fK1cz3bitO8N7iWxTvBs836MBx6zH4UKpGRkOvKPnYITpWEgZSx1qJU4OhxIYe9I3H0ElFIjkCmjmFWhs/9nydlT3EE204SUdMtmNT1kOL7OK6V6qjqZHlBFW7TjURhRHsKfxJdiXQ+2hi9XTF4ud8QdbAUyY+BSSmaiuyQC6DCRKlf3sKpiFUjVKDllM1RIaB+xZDZKVZbiPFBDILNmezfOp92tZEXmD/WTQObM9k68fX/o9GrwL1j/vMmduehBnM/NRcgglKqfiBNJoR7mM/yp4kfcZQhTrPfj3IVaOJ4wg9YIO9Ooabx2gr3hc75SqFtPgkp6yL8H78vKvUHP3HEWNHSJxNk4dl3XHs5byLLc2Y0dmdOhShHxj/l515l1wjBL8/myL4997xyUeRvEt/xATpncpX3H5AXad01epF0weYl2EZLTLpl8inbZ5NO0p01eoX3P5DO0Z4xU/H8Z+yxin8E7HmLTvo/YtB8gNu2HiE37EWLTKsSmrSE27TnEptWITbtiVNv2R90g7HyqIkidRlZZNOZKoxbIqpG6L3X06Hl0YE+9QVQ9aGmVPYj/loGuCOTCWGl3Wc43xF1as8V9/KIQLz9qGHXN5ukbR4oTNse1mBiUfmf5d4d/Wxu6lTfcJVRiUDcSnZwnenPQCiQwzdPtQJr/REUf7YN+EUfhLNdVU/V4vyHhnSzr6R4uabzncbJgjjRdd2kR8dcMskKP499SZKrjH2ZNrVQ7w16Xnj9WzeEeUuKQ6vhKUl7ZzZ34aUEVlfe0sFo8m4ScKhVMJ23ZuosLFL16G1IOj+G8LETpgZZiNDjA40I08IBTDoxX3xkgJQxp3cXZaUTooi4YGwX7TQii7YjCk5Tal9FI5dd2xY6sqG6TwC8mmKdryfNYOPLL1EDBU14daaDbkOaKdUsF90Spru4xGE/rqpWMBYwUdXbjpmrjs8KMR07FXMaS17G6M2z1zr4entKkth0di2bvXhuFj07OJeUH7dX6Ts5x3WjVpGRdDNZ20sxX3UXcuutjd/9Fd+tl9kTODSNr/sRNbxq55GcIzE5Btq9zcCZNWQX11ri9TqRlZ2n0eRM3ZLhd2/ArE/6HPuz9X63H9DlU2hpz44XDriWjHG9TjJP6N1h/TY8EGNUxLvkTlLw0vJnHDi/hQlMMLuLmG/yfYka5iwsSAIdGLsJEVK0DXVUXn6ITnbYMe1EiwI45dpw2QBfAJeiZY9d6PgOwnjvk3Aa4Sw7BNjkEn5ND8AU5NwC+JIfgK3II+uQQ7JBzC+AeOQT3ySHYJYfgATkbAF+TQ/ANOQQxOQQJOTcBHpJD8Igcgm/JIfjOyOWxzN9zIetAP1h0HSi1/YRFC4uBkStj9h4Xlr1vEdkHFpF6aOTqmHrEhaX+aBGpP1lE6s9Gro2pv3Bhqb9aROpvFpH62PhSOZTiSv8Jvx/BX+MB+DMAAHicjVkLdBvVmb537sxIsizJo/fbGsl6WQ/LlmXF77EkxzZ2HortJIrzcpyH8zYmQCCEJATShEdISAo0pW14tbSkJbALbKGn5cB2d1tKS1lO93BKaaE9e3bZ9uyyPbtnN1jK/nfGLxLaro9tzejemfmf3//9/yAWxRAi73E7UBC1ok7Ug06+iDCDcG7wsm/lWqkZEQYzBE8izDKY3Y4QYghixhCLODXLjSGNhi8intfnkVqtKiKVSqcquKSmay/jkQbxmtJ1ly9cVJJ0PZIgmCOhQL27rsoeM3WRdJOXsZj1rAEHwqEuNtMcCvj1TMAfNjV3MbOLcJpksCiIWfj7xL4kNxTv3Nof9sSaG0RWuFXHOmOZRG1vS7gl7NQ6qjfVeMI2a9gtCO6w1Rb21FS+Tb4zs6qJ9M68yi6zBD01/q5SS2aotT5YZ916o9gYDSWy4VSrYBEsZYc14hEETwQulG/ATlz5UoYtI3T1KgqAHX/PBZAfMQFqQfIxQiEpYMaIxTkOI4KpWUFztjqPGEbHFMxmUQgIvA88gDBa+FG9wGGud3OhETHgE8QycNcaZKF3M/2Fu9XwlhhOW8x8DMOtRX+oAeM0ac5ikRS+bzJ+6Vz5TbOTFZh9XznHVzL4h/iXmwyWyjN4rUUYIcXK26nW8hFZmxNX/wMfRv8CWjHoBIhHEIecn25GRsmAMEbDIKYFFSJBxq1Iv4c9gye4k8gk74BvhmGbHnbUMUIMz3opM+s1PGEOJByOuAgyxx2ORMDMaR0JepZwOBN+s9mfgDhBatD9AudHOmRFdZJowizBOYgcaoN1iJDqPANm06GCIARMPs4cEwP+UJiIRI9joDbonMRhPVaxFx6we9RT5Y/286LtAfyH71Zex6+/UmXWwK/diDsqPxScnH/m7xjBLgVDkp3q47/6CXMvZwBvDkhLNRiTWszxPow4kkM85jDPTYLZq/MshrUiCGPII45DIyosGwYjj8tuNRmFGoOOZ5Ef+9WGGOcPZQQQsRNnTV24HQuiRRTM1nQTtYq1FusxfvzG26cMlgtRxlKzDusqf8zGnUGnSa3Rcs2J2w133caMmE1LzThhMFaeP1r+m44OvVGv1ozUJ6nMFoS4J8m7KIF8kidkUxMCaQxpiJAB5CRERwr1YqyDWsoED7SZvNjWNSvL7GmLcoYhxWaNRyCULPeZ3exzVXpObda+zjmNQ2YH932tUa01/xXnNN1deet+R9Vbai3HVanf1rrvIe9YDeUz/h6fryfAHDCYTIby/f6cryfPTNWYZ5Iic86WsNmStvI+UY6dByFzXuZOg/wJqd5MGIa6GSGAFELkOLLlOZaRg1wOO0vAAmljiqWFtNCFZRiAYKfYwKuEBy93fnHLyttWRS9v2TZ4tIU7XX4jtzwzfmq4fJbZv/f2/u5yI42tkaufkDXktygKGXZK0vogthpYhlcxgHt+wL0IYglDWAa8jFQ8oxoDWbhhcLEtr8E8j4axmpFjzyXF//RWNY1P+QJZDwsGlHPG6jFqTNW3xlrr/EqUVKlRFEerDDE5YfVkLley84AHX89pGmyiC3piMXsZonG6OWtoYOX6bOvEYKz79O++Pr6ha7QrYTM61b7iq9Orjq5OVArxG3Ltnpuf2pF01LfVOMYC2ZCptmc817Z7JMMOTt/kC/mM+iXLl2W2nBwuP7jHKDZ6f8x5Uj2RUDYgABbsAydt445RZINDmo8U3zjmfykiQRaQYdBYL6cCZIFsFdDVpNVgFrNGzhUDH5+Da/LkHUSQXbIwi3bCf4KIQGpkxML5y+SdmSRshGvup3FBPkR2NPSSjZfDQnGOCZ4HHsA0sOciwyXZED2/PmZKUjWs2JE9YAmKStjQbLsucu7fabIzhu7HtkP01F+e2DZ4Vwt5RzBNLh1dCJ++7nKK1jA0ePU/yfMgWxAlUb/Ua8Ny0BLMYAKBwANg8nhMjQEShikk2ChIs8MA1xa2EA5hVB8NJcNJj8tsNOg0KhTEQY0hhuWKxgdEL1kAhflosIGQYnOSYWxrH97XZbSXp5lkcapX2phPCtoavkksbd+b2X7p8NLuW5/dd+hBI2PxSxvIh21TT+yMutafWpfw1Hk0aincGjQW7nnjyPbnj99w9Mzh9om+CNj6OCj1BOSDHd0/eDkBNtZWg4/B6mDEnIuekbmz0uBlL3UCKMvMewGzrI4tuJRrFU/Q9TlXzC5LXij/kC3s5LW+UjaU5n0l1l3rK6tNxUMi0HxQCce3uW1MdeLuDbUtVj1x6NO1id5svRGQx3lmfEpnuMuhdWWGGssP0zhaClj+PviqA3VKbR0Ycx4MiuRoVYNCOokIgCNQFFhQsha8xAyDvyxMoW1JOOj3uRwBkYcyxlNXUAEg93iFeoTCWSWQqMMyzUleqXFWG/ONarsh0JhPhrvi9khudO1oLpIsHR8d/1o2qrYKxrp0f0syH7dGc6Ol0Vw0PnLHyrHzzSRltTqs1lDaE2qq83gjbcPthZtGUrlMTqd3iS5nrM0XyQTdteHOtd2tO5YnO1pmY/EPoJ8JhVFcisrJwcpBx825AJDHAkyk1mMOW8JaDTJhEz8Xbwu12aToMKciw3h2XzrY03Pw0u7d376tp+e2b+/u29UXCMC//t30czf5sO/4KzcdeOV4H3weuAk+Zy40bjy5Zs3JjU1NymcjkjH+MODtM5DWNJcNKqAu87kMaTqLBswwDRkll+e+hXO6JEOMhSzkclA0BSA+sFw/W7JQCWSQ1GNZFwEnIH+PZS/vMtqZmu4vyylN3imf3XdbXxfz85nkfFoz+xX5ZHyCGjSPT/o/hU/c6SvTsBHsfgPY/Sk4tKEQmpKqzZhj3C6WsBwtInWgm0fGRYgpOZxseRVEOWQMP1c5xGvWeblc0F0L5cLqsGPk89pDjpDVYqxR88iGbeq5UoEXaJXVBkYIUlsk4VteLg/tgGjGrq9ODn9hc3Prni9vKd3ZeLmybPhQpmFf/p4zYtc6wXTz4PqeO1+9fc+rJ5e3ZxnPlekjy3rxe93p1/9608k1Udk22spL5Cz4zopckl3Pyc6bh3ABFeJ+PzHGMGVdJnwtscBfUrucx5+p3Puozc7/Tm3geIP6V7xbuL/yG7MV300eterLj1nqLdaYhdlisNDnmcDk98LzjMgp2arwZx4HdouLNfA4MXDdoxjv1yrnz5rd3M91RrXKpH+Xdwn3ASToy6cDOb+YDzDT8ADZ19yHkC8xtPrlej1PIP9ng9HKyx6a5UxqFUdk1uSSnDJe8bJnqCy2hcWSzHdjKAasxBQKixrrPGoRKqH8f67M6BcXnHOTZhtjcHcuXZnYdsRl6R3Z3HTxucuT4/Hl7YHL4xulqSStP1vFbNS6b0PLUJPttRdoFZq+2dO+upUe3Tydby9H5Hp0BmLxY4hFKzD2XZLG5TRBHMp6KYFI6dR8YNmUmOOBalGQo4F4zTpP6eJ8ZFpoETXZAdZrPbaAPQBPsUQCgtq4mILNwiGANKbKeeHbFuAvZy53XNg6enJzum3Phc2bjzVVsWHcWTyUTu7LfeHMUaBn3+0bzt3x/NStr983NNCzJkhWDy2tRCD+XnvhGfDV8xALL3AhZECi5NWwcuzBn0L9ySoku0AQHDWsKQYNYHNWxcs9j5C2iFexQH5tT2gy+MjJK+VlR8mt4fq/Net0A3j403VHkWy3DNjtPa5Rxk6v5EKzeGnOyyg62+VEInVw+2u7GNUipKToT97rv/PZLVu+dbi///C3tmx59s7+76SKu9radhZTqeLOtrZdxRRz9lL56WLx6fKlS+WvF4tfL196+M07WlruePNh+Mxk7nhTzjdoQJgJ7g7kRVmpWahhaMBxtGDNCqenFQoVCVZikuN0HIUpL/IKlmDQqjKDW8JJ3InTc8igokChZzyYdhzfmrA4H0qMHBysbXdxTDxYn085sapylXTrGKu5f8PI8VJDlWatjbM2j3atPTrzGpWpF+zUBjkTR61SSxzkcQLjWVxDKfFZXEMX6A409BEKSLFZuFpss3TTYoZDRSVYbdAbfKnepty2fCBY2NzRdkOTaDRXp33L1403rX54f3fb/id3bX24jfi1WrvHnt50cnTtqY2N3jqvoJCbY68e3PvdE4P5DvDvA4BdHwOvoRi9V6p2u3jCsVbMyBhNaYxnFpRlY84HvJwAAplNDcN1qbN4D6SGA1ymYDQ8yBYJipAaps/QzNnsEBbnRpJ5gFJOoevi5MjJzc1tex+jAI3JqsPNyf2FE2fF7rHKS5xbME1TjH4FMPrU8o6Wyir24myKUIiOKHF8CPzTzt0KUdyOMlKTMsK5dghD+ZrSWLGs7CcLR70Td9eBdz5v3KI463PmLYe8A6u3ti07vqklnlvR28gaD+rYejhK+lqHYu3DbXXVdv2dJjHhhLbeZJLbetHE/t7dFLLFVx3ov2HXyvbmtO/8xViuNZsfba/PNTjcAbf10x85En6TyQ/746LRKMZl3QCvyUecH+mRA9VLYUQ4Ol6hQyTFJ9XzpdphEwywTScKlK7RCciczGGFn4ViGA+8hG87+PyB1s5bn7vpjTeW7hkInn7oDfxxxcr523Y9smH9o/s7z0T6t3bceR/EPY8Qezc8W65FatmqNFTmhi5C3Ae1SO6msVKJsNI/8+fsXhXurbZp1JZqXOB9tnMV01Oc326c2VE7EIkM1JJHBeeVD2huDeL/YaLMA8AzbJIZ0fHKMooDRVjCvZD/QswEeTuIP6j4mQe+iGRGcuCqm5zn9CiNutAAkqTO3pAH2HQhrAO20gZ/LCI5JwBHDzQldHwDjBs4IaW58MmO0uEFU0g3hQVviDPFOGj2Z4mszZQkNBm7cVoFKqmUpA0TL6GGhNDAzfS0i2Az3awn+NVt32wNVdmNunBbcYmzbXpdNrHu5Jhhm2Hk3lRELeirxYaeuL39wIZW6DBHDNvxck9jPmTPLE87KoOORGfAlu5PWIzalV3tBoO7LqDCOw3RwrZl2d2rl3A/+ZlWSvVUGyxuN1+5JER7JgYKt4y18m8zWn9jnUtbeZ6tbehkbLUNAZcWt3KeeAudX62XZwqNtGddT5MhCMyiUUomMCbQ2GBArjmWDFCPMVNU/MngYMBiFvS4kWnknDGFG/bBvZ6Ae6XoHQD7iPbP3AGjOr/ZVKNDKZziFii2igKB2GQFCM40t0CUkLnsAgNDc08Yfvj0ZHtsYHOm8lxoWQA/7vLNPK0X8CPNw22+QMeqVMPKrniVOhxYUz2w70GukdLrgcPTe7OVx7XVtc5trUK4Bj+V2TKxvbV1davbk+6r91s4/dh9G1NyL125gg+if0ZuGmMGjLvnZnQ6XHA56piaWHZRiqvCoUxztotkAbPuF7wxpzfhNTgaCnGvTq/x1jp5bbr7oDXiNVqDaU9s4/o1QXd1TbW+qi65xFeQbXYv2Gwa8kaDIlIQzgGGGDr9ZYu01avOK4UbvtAgjQA/lMtDbaL1KSCQ6fLP8K8qgZc5//lK6/nyW3AjuMd5uPxhOLRSjs5Sjladn+0YBJtoq6FzLZqISZxR+oEw5CTlW+k/2uwG5scMubje4tGXWxjm4ibOrzXPRO0NZvLlKx/ojeRdW71pZjPcHaOzIPtDcKRFSSm2SHauSIutLDtbRHLDCt9qkZYqIEDZndNAVIkCOVt+Gf9TJcrcgMuI6lF8sFI4D3eV8YxtgyMHcLUmqUGPKQFFLJQTxJIxgOVZVJudbiIUEN1O2G1PiILK+BlcoxlKh3Wg8xzEATEGhJs8+NyNLdFlU32CV4/Hn2hwVn5kCARuf7Z/7w3Bym9fYPzlDzh/etMXRnoPbu41al2m8v8E8btW0z3BwqbWf0NzPIT8FORU0XmizLeKdIxYnVfChk6qkQo054yy5iBVhvy0cuzlylHO/+int7D3Pqpg1Sro/b4HtakW0KoPFaQeu5qhKqsxgBSzSGVKQWmN4pUhKujiw6i7s7kv0xeL+tJiGtC9Ftdq6CiVMoaWLLh6Pmx5MAa1SfiaLva6rlY1/vhN0pHbt+9o3XF27dqzO1ontx86It30+HjHppw/2ruhObOhN+rPbersGG22u7PDWfh125tHDdkdD607caku8sTU0D0TS5ZM3DM09USk7tKJdQ/tyN4XAsP1bZW8XmlrX+umQoh5JFooNaRGuoPB7pFUQ6kQpbVsPdji77kdyIMa0eCLBCww96bFTrMDImAMcGRh9Ak9IDRdcCGza359Yan0UiRYHwlC4AO3Ui2mGop5lGJknp9OyDbALxo8uthkx9C9Ozt7bn5yYuJrU52DK3FO1+h7rPyP/tzmrs6tfeFQ73h750RvkGyxhE0eX8vOCxObnr69N3/ouT1jP7kF/8Jonynk9i6PJ5bv7i7sGYw0rIAKw6Hc1X/nbuFulvl0O1qBSugZhWdB2YZ1gsDZiFdx/JjMZjVKp61SscMQDZQtupSOJfbntqvVOuUahWDS100agGQNM/m5V6HPu6hUknSlNaGI8kPfN/0lfv+X1jn5tYPciJ5LrdrT3r13RSKxYm93996ViVOOWLsotsXs9libKLbHHGSPsmVlIrGSblmRPOWIt9EtDgfd0hZ3zAwYk55B8ksh4V/GOopHSslk6Uhx+C76edewtHaJw7FkrdS1psVub1lT3lM8SheOFoePlRoaSseGu0tZhyNb6u5WNrxba+Finlq5Flz9RMZRwB/JRzCFGlrG5lo9jMwmfbWKRw7sgApG580UT+e0p4eQRGdXHF6deKn/ntcOHvzBif6XEqsPn8lOnFxFvDMfTb9+ulg8/fo0HP921amJLK3HPnimmjtJ67GPzpAblXdKzNMQ1eckvRdjlQBc1UjRdrYZb1gYp/LV1H+aYaTR6PMcSKwqVmGVSp4PoREWz85T0v+fK+iIhXYnI7NxIJkwbmmO1+MgDoYDwUBAMGrFGLUTyAy804Dq0CFJ74Fb1ICEwiIJg595nvIU9efIFf3T+66Thg4T6lCdIomgsSpw/9nXRIFrXySRjy5XGjIxR8BhlN8VxQ/27D+4p8bySISYhXXktRmJSIvfFn32RRLVFXp7spm8A/wAumCLAXB5luka5kpsxB8VoQvWKGOXuZmLBsvv3HiV8tKtr/KrZ8wm9U9YjfpZjVn/eOV93PhNs0P9M3XVq2qb6Sv4v/H7+urKV7QWLW7W11QSFWzT4WlbTeVFvZXWCqlykVwkH6EsGgTseESqATupUwKAdnc9wxFqeSdYPg7OBD+ooAmAKIKebgzJAyK1GgFIyPN2npdT3UHxoQE0VCOsnrz+ss+9oiS5lw1hNFwcKi0r9S/t6giIdluNHuA3i7NayuqsNtECPMqqoG1YjxdGwguVaa4+AWNmlS0KkMiDkdkZHf5p564YRpHJ2szGY8ukFo+7Ze3UzVNrWzpufHLHjgvbm0YHo6mOjt4VmY134X1BaWTjeKKxy9u9JZ/bvrSu8pvxiYnxTROOxgHykdvZE+AN0lD/gVUJgylmCfhrWI25cbTQfcv6bH3/xnT/Vo8pl63fWBs9Ueo/MBz/9F8DcYeWZ1XOgbS4JGp3JrqZ9j1rSjt3lmJ9zR4aF99AiE8BVvjpux47YeS2kqGkCE+yWGFgMhsQLS1ClBaiRW0QHXVBEeJjGBiKPAOTGyWS11mqqqAtervabT/xOGEqMVvMGbNVfPzFE3aXDv8C/9qWcjhTVhK0aK58QH5gbnTM/EM0SrJNsZkezq+xzrwPIhylc0LuNPKilJQAFoXk14YQuWSMEjV9Xo4JFs+9OaQDkiA055SpCXRqrJRHqJwKiwpRGqWMeVMRE8Qlq/faLlbe0rtrBJce933V4tNV/kvvcCUuc6dnvlcl4MEaY+WIwVGlrRUqboMRnzXrKgnu9P8BDqS6GAAAeJxjYGRgYGCUitu4Yf2ueH6brwzSHAwg4BV8ZxYDHPxbwGbA2gdksDEwgfgANYMJiQAAAHicY2BkYGBj+McAJK8zQAAjAyowAwA0rQIaAAB4nGPhY9Bm4WNQZs1iYGDRYLBkYmVoYzzHkMN4HshfyMDBtI5BiXUHgyiLCUM/81WGEMZrDHlAPBnI72H+zeDNdIqhmVmRwY3FgsEbKFYLlfNins/AzTyXQZgtBcyfALRjIxCbMhUySDAnMbgCxXqZtzJUsygB5bsY2JiKgfr5GEqAOIb5DYM743+g+WsZuli1GKYwv2CYyBLBMJn5GYMEUD4IpAboJidWJYYellIGBRBmLmcQZz7C4MB2nWE582KGBgDjmyxAAAAAAKQAxADPAQsBIwFNAU0BiwHlAkECewMRAzMDTQObBAMEcQThBTMFgwWdBhEGSQZ5BuMHTwd/B8kIEwhvCOMJUQmPCcEJ2wprCpEK8wsrC1ULiQu5DA0MMQy3DScN+Q4zDo0PAw9HEA8QXRCrAAAAAQAAADYAWgAFADoAAwACAFAAXQBuAAAA8Ap1AAUAAXicfZDdasIwGIbfaitsgx1uJzJzAy3qTsfAH8SJShHxcBBsq4E2kVgZ3tTOdiE73s3sLQbBk6YkPHm+Nx9pADziGx4uo8N5YY++47iBAKHjJl7Qd+wzEzsO8IBPxy16xaTn33H3ji/HHtr4cdzAPX4dN/GGP8c+2t6z4wBP3qvjFv3H0oitOZyt2u1LoXRmbCFLZbTIzEkn0XBQjXAkba5KszKF1LM4TWQu4vGkP10v5uI2crvbpPZYNetF3dsCljAQ2HI94AzLn9thj5JOQSOjtyggaRRZ01fuREoQYYjB9QsxYs4iZ7JkZsVZndSY8SlT5iVrgjzGhA89xRoLzGnqutTVNuxqcbzerMcbdetO/AOHC1gvAAB4nGNgZgCD/zMZDjFgAQA2DgJeAEu4AMhSWLEBAY5ZuQgACABjILABI0SwAyNwsBdFICCwKGBmIIpVWLACJWGwAUVjI2KwAiNEsgsBBiqyDAYGKrIUBgYqWbIEKAlFUkSyDAgHKrEGAUSxJAGIUViwQIhYsQYDRLEmAYhRWLgEAIhYsQYBRFlZWVm4Af+FsASNsQUARAAAAA==) format("woff"); } ve. PMT should be blank. var isIE = false; var f2 = [['t1_2',481]]; function load2(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f2);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
Consider the following independent situations. (Hint: Use tables in text.) (a) Mark Yoders wishes to become a millionaire.
A firm has $45,000,000 of preferred shares outstanding that have a yield of 10 percent on par and are callable at a 3 percent premium.
4. At what interest rate would you need to invest to have your money double in 10 years if it is compounded annually?
Introduction to Finance FIN2030 Week 2, Assignment 2 Part One: Quantitative Exercises Questions 1. Future Value. What is the future value of a. $800