Practice Exercise 10 Develop an Xbar and Rbar charts and determine if they are in control Samp le 1 2 3 4 5 6 7 8 9 10 A B C D 14 2 12 4 12 4 15 8
Practice Exercise Develop an Xbar and Rbar charts and determine if they are in control Samp
Practice Exercise Develop an Xbar and Rbar charts and determine if they
Xbar and Rbar charts and determine if they are in control Samp le A B C D
Practice Exercise Develop an Xbar and Rbar charts and determine
if they are in control Samp le A B C D
Practice Exercise Develop an Xbar and Rbar charts
Practice Exercise Develop an
Practice Exercise 10. Develop an Xbar and Rbar charts and determine if they are in control. Samp le 1 2 3 4 5 6 7 8 9 10 A B C D 14 2 12 4 12 4 15 8...

 Category: Words: Amount: \$25.31 Writer: 0

Paper instructions

Please help with this exercise to determine the estimate for the µ, determine the UCL for X bar Char and determine the LCL for the X bar Chart. ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:74px;} #t2_1{left:76px;top:109px;letter-spacing:1px;} #t3_1{left:76px;top:126px;} #t4_1{left:81px;top:172px;} #t5_1{left:81px;top:189px;} #t6_1{left:149px;top:172px;} #t7_1{left:183px;top:172px;} #t8_1{left:216px;top:172px;} #t9_1{left:249px;top:172px;} #ta_1{left:117px;top:206px;} #tb_1{left:141px;top:206px;} #tc_1{left:150px;top:223px;} #td_1{left:174px;top:206px;} #te_1{left:183px;top:223px;} #tf_1{left:208px;top:206px;} #tg_1{left:217px;top:223px;} #th_1{left:241px;top:206px;} #ti_1{left:251px;top:223px;} #tj_1{left:117px;top:240px;} #tk_1{left:141px;top:240px;} #tl_1{left:150px;top:257px;} #tm_1{left:174px;top:240px;} #tn_1{left:183px;top:257px;} #to_1{left:208px;top:240px;} #tp_1{left:217px;top:257px;} #tq_1{left:241px;top:240px;} #tr_1{left:251px;top:257px;} #ts_1{left:117px;top:274px;} #tt_1{left:141px;top:274px;} #tu_1{left:150px;top:291px;} #tv_1{left:174px;top:274px;} #tw_1{left:183px;top:291px;} #tx_1{left:208px;top:274px;} #ty_1{left:217px;top:291px;} #tz_1{left:241px;top:274px;} #t10_1{left:251px;top:291px;} #t11_1{left:117px;top:309px;} #t12_1{left:141px;top:309px;} #t13_1{left:150px;top:326px;} #t14_1{left:174px;top:309px;} #t15_1{left:183px;top:326px;} #t16_1{left:208px;top:309px;} #t17_1{left:217px;top:326px;} #t18_1{left:241px;top:309px;} #t19_1{left:251px;top:326px;} #t1a_1{left:117px;top:343px;} #t1b_1{left:141px;top:343px;} #t1c_1{left:150px;top:360px;} #t1d_1{left:174px;top:343px;} #t1e_1{left:183px;top:360px;} #t1f_1{left:208px;top:343px;} #t1g_1{left:217px;top:360px;} #t1h_1{left:241px;top:343px;} #t1i_1{left:251px;top:360px;} #t1j_1{left:117px;top:377px;} #t1k_1{left:141px;top:377px;} #t1l_1{left:150px;top:394px;} #t1m_1{left:174px;top:377px;} #t1n_1{left:183px;top:394px;} #t1o_1{left:208px;top:377px;} #t1p_1{left:217px;top:394px;} #t1q_1{left:241px;top:377px;} #t1r_1{left:251px;top:394px;} #t1s_1{left:117px;top:411px;} #t1t_1{left:141px;top:411px;} #t1u_1{left:150px;top:428px;} #t1v_1{left:174px;top:411px;} #t1w_1{left:183px;top:428px;} #t1x_1{left:208px;top:411px;} #t1y_1{left:217px;top:428px;} #t1z_1{left:241px;top:411px;} #t20_1{left:251px;top:428px;} #t21_1{left:117px;top:445px;} #t22_1{left:141px;top:445px;} #t23_1{left:150px;top:462px;} #t24_1{left:174px;top:445px;} #t25_1{left:183px;top:462px;} #t26_1{left:208px;top:445px;} #t27_1{left:217px;top:462px;} #t28_1{left:241px;top:445px;} #t29_1{left:251px;top:462px;} #t2a_1{left:117px;top:479px;} #t2b_1{left:141px;top:479px;} #t2c_1{left:150px;top:496px;} #t2d_1{left:174px;top:479px;} #t2e_1{left:183px;top:496px;} #t2f_1{left:208px;top:479px;} #t2g_1{left:217px;top:496px;} #t2h_1{left:241px;top:479px;} #t2i_1{left:251px;top:496px;} #t2j_1{left:107px;top:513px;} #t2k_1{left:141px;top:513px;} #t2l_1{left:150px;top:530px;} #t2m_1{left:174px;top:513px;} #t2n_1{left:183px;top:530px;} #t2o_1{left:208px;top:513px;} #t2p_1{left:217px;top:530px;} #t2q_1{left:241px;top:513px;} #t2r_1{left:251px;top:530px;} #t2s_1{left:76px;top:596px;} #t2t_1{left:91px;top:594px;} #t2u_1{left:76px;top:643px;} #t2v_1{left:88px;top:641px;} #t2w_1{left:76px;top:691px;} #t2x_1{left:88px;top:689px;} .s1_1{ FONT-SIZE: 58px; FONT-FAMILY: BAAAAA-DejaVuSans1; color: rgb(17,17,17); } .s2_1{ FONT-SIZE: 50px; FONT-FAMILY: CAAAAA-Carlito1; color: rgb(0,0,0); } @font-face { font-family: CAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAAzsAA0AAAAAFawAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAAAXAAAAZ4LOQ5HY3Z0IAAAAbQAAAAuAAAAOCX+AcJmcGdtAAAB5AAABRIAAAp127YujGdseWYAAAb4AAADkQAABKphEQO0aGVhZAAACowAAAAxAAAANq1cQWtoaGVhAAAKwAAAABsAAAAkBgIDdWhtdHgAAArcAAAAKAAAACgjHAMcbG9jYQAACwQAAAAWAAAAFgbqBc9tYXhwAAALHAAAACAAAAAgAcQLXG5hbWUAAAs8AAABFQAAAhOaMJEUcG9zdAAADFQAAAATAAAAIP+cAMJwcmVwAAAMaAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nGNgYGBmgGAZBkYGEJgB5IFYUQwsDHZAmouBg4EJCBUY9BiM///9/x8oBmIbgtj/n/6/AtYP0csGJhmBNAeFuhkYQTxGJlY2DgacgBWFxwTShEf10AMANjsbhXicY2BAA1sZOkGYVYmBgbWd+RIDw79t7PP+3mI1/P8JyH/4/9O/hSA+ABumEdgAAHicrVVpd9NGFJW8JI6TtLRZKKjLmIkDtUYmbMGASVMptgvp4kBoJegiZ+vKd36Dfs1TaM/pR35a7x07ZjNtT09zcvzuPF3Ne+/OmydxjKj0KBDXqAMlz/pSWn0opc6juKZrXhYr6ffjmmwmnpIWUStJlMx2BgdygcvZjpI1gjUynvVjdaSybKCk2o9TeBSfVYnWidZTL02SxBPHTxItTj8+TJJACkZhn1J9gBTKUT+Wsg5lSoderZaImwZSNBr5qIO8vBcqPjmedQuNGmCkMpVhu3ytXM924rTvDe4lsU7wbPN+jAcesx+FCqRkZDryj52CE6VhIGUsdaiVODocSGHvSNx9BJRSI5Apo5hVobP/Z8nZU9xBNtOElHTLZjU9ZDi+ziuleqo6mR5QRVu041EYUR7Cn8SXYl0PtoYvV0xeLnfEHWwFMmPgUkpmorskAugwkSpX97CqYhVI1Sg5ZTNUSGgfsWQ2SlWW4jxQQyCzZns3zqfdrWRF5g/1k0DmzPZOvH1/6PRq8C9Y/7zJnbnoQZzPzUXIIJSqn4gTSaEe5jP8qeJH3GUIU6z349yFWjieMIPWCDvTqGm8doK94XO+UqhbT4JKesi/B+/Lyr1Bz9xxFjR0icTZOHZd1x7OW8iy3NmNHZnToUoR8Y/5edeZdcIwS/P5si+Pfe8clHkbxLf8QE6Z3KV9x+QF2ndNXqRdMHmJdhGS0y6ZfIp22eTTtKdNXqF9z+QztGeMVPx/GfssYp/BOx5i076P2LQfIDbth4hN+xFi0yrEpq0hNu05xKbViE27YlTb9kfdIOx8qiJInUZWWTTmSqMWyKqRui919Oh5dGBPvUFUPWhplT2I/5aBrgjkwlhpd1nON8RdWrPFffyiEC8/ahh1zebpG0eKEzbHtZgYlH5n+XeHf1sbupU33CVUYlA3Ep2cJ3pz0AokMM3T7UCa/0RFH+2DfhFH4SzXVVP1eL8h4Z0s6+keLmm853GyYI40XXdpEfHXDLJCj+PfUmSq4x9mTa1UO8Nel54/Vs3hHlLikOr4SlJe2c2d+GlBFZX3tLBaPJuEnCoVTCdt2bqLCxS9ehtSDo/hvCxE6YGWYjQ4wONCNPCAUw6MV98ZICUMad3F2WlE6KIuGBsF+00Iou2IwpOU2pfRSOXXdsWOrKhuk8AvJpina8nzWDjyy9RAwVNeHWmg25DminVLBfdEqa7uMRhP66qVjAWMFHV246Zq47PCjEdOxVzGktexujNs9c6+Hp7SpLYdHYtm714bhY9OziXlB+3V+k7Ocd1o1aRkXQzWdtLMV91F3LrrY3f/RXfrZfZEzg0ja/7ETW8aueRnCMxOQbavc3AmTVkF9da4vU6kZWdp9HkTN2S4XdvwKxP+hz7s/V+tx/Q5VNoac+OFw64loxxvU4yT+jdYf02PBBjVMS75E5S8NLyZxw4v4UJTDC7i5hv8n2JGuYsLEgCHRi7CRFStA11VF5+iE522DHtRIsCOOXacNkAXwCXomWPXej4DsJ475NwGuEsOwTY5BJ+TQ/AFOTcAviSH4CtyCPrkEOyQcwvgHjkE98kh2CWH4AE5GwBfk0PwDTkEMTkECTk3AR6SQ/CIHIJvySH4zsjlsczfcyHrQD9YdB0otf2ERQuLgZErY/YeF5a9bxHZBxaRemjk6ph6xIWl/mgRqT9ZROrPRq6Nqb9wYam/WkTqbxaR+tj4UjmU4kr/Cb8fwV/jAfgzAAB4nI2TzW8bRRTA35vZ9cbxR7z1rmM7duz12t7U6038sWvHbbpx1g5xSiIaG1EHR02UBNMDH6ISKkgN7amKQIJyQkhIqAiOhbYS4sCFA/8EJ64cgWObxIzdVAUqIVaaw+zM+817v3kDHOgA9Bf+dchADS7AEhx+D0gAnRfvJy916yZQgoTiVUCOINcHAEKB9IADfozje+B2uzbA5fI3YGxM2ABB8AnNqXrp32EucIPLvflc+LOgzbpvqS6K0kxWzcXS42E9aNNyaZrIkp+bQFXL2pxlZtWUn6gpLWja5HSRTWcJKqJSZeOP8Lyzlr+w39LiujmncOJ1HxfVLSOxXNEqWtQT8W4H4tpkSIuJYkwLTWrxwMk9+u1Ru0SXj37k1uVMPJCyNyvWWi2XSYf231GKZ7NGVSvURFmUjyOhmbgoxmdY4AjA7T363OKOWVUID5jHh3wWJkCpT7s5phAdNrwNgmylDZT6aFMUIwEuqLNUzargys4hlsWyrAxQpL+GDbeFNw8fHa/fote13M+Sz7eKncev3mL4wQBuD37HA/gNVKBwmx1ImcPo4x04U59gx0CH7ZKhOZMhMX2Uz7NPeMgjv7zTLLK/b3B3cI8/hOAoju3rsGA/i0sTUcdTm9apXdyTVCMSySuSpOQjEUOVeE/EGM6MSNRISVLKGGa2xer7gS9CCujWsHcEGaBYnzUQqRdZGzisduhwLCWpwU4jG0CIjzQJZlRZEv1YJEU+Okya5bfCWF8xVmFIyDOC5z8ICOmUFAz4oIAFfkLH04YQ0MayUgrFUbHMShVtapmzZNg5gh/n2JS4Oh9fPa+v7lgn32XXVbw7lTz6xi/iZ2bnXFJdaBfmLtn58TFNvexdfesTvli6cnh59eDam9WTux5vIvpaTdQC+LW1u9ev1V6pxeLllVxK5v29j64Uhj62B3/Sn5742B76cAcBlur2InK8BykXZg+DOuz2KOFoD3geOq4nlREyug4ZmZuqZeT1XCopncEGaQhP/awx9j3GdoZEmxHHGXHyfxARKiYDnlUSQREcdIS/+ZrGp+9Iq1ZCk9Ps3dlk5Mx63l248+F+NXGuXT74oPnuF93+nb4TasUtr1dd2Fp2dh0l2rq5377WSirnNwqFl2zdw0R2fa23mchC98ba4u7FciD15Xu9T/uV8taNiwnveCS6smQYL3Rz5uZi+n1UF14uzXfmp/7h9S/c/baeAAAAeJxjYGRgYGCUitu4Yf2ueH6brwzSHAwg4BV8ZxYDHPz/wHyTtQPIYGNgAvEBQmwKegAAAHicY2BkYGBj+MfAwMCaxQABjAyogAsAKcIBgAAEDgArBA4AsQIFAIYFagAAAc4AbAHPAAAEDgBcA+wARwQOAF8D7ABMAAAApADUAOwA9wEhASEBRwGpAdcCVQAAAAEAAAAKAEMABABEAAIAAgBQAF0AbgAAAPAKdQAFAAF4nH2Q0WrCMBSG/2orbINdbjcy8wIt6m7HQCriRKWIeDkIttVAm0isDF9qd3uQXe9l9heD4E0TEr7zn/8cTgLgEd/wcFk9ngt71HuOWwgQOm7jBUPHPj2J4wAP+HTcoa7o9Pw7Ru/4cuyhix/HLdzj13Ebb/hz7KPrPTsO8OS9Ou5Q/1gasTWHs1W7fSWUzo0tZaWMFrk56TSKR/UKY2kLVZmVKaWeJVkqC5GMJ8PpejEXt5bbaJPZY91sEPVvE1jCQGDL+4AzLB+3wx4VNQWNnLpFCUlFkTX1WjuRUkSIMbrukJGku6CzomfFU1dqzPiVGf2SOUEeY8KPnmKNBeZUmro05TbsanG8TjbgRP2min+NBVg3AAAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } @font-face { font-family: BAAAAA-DejaVuSans1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACIAAA0AAAAALuwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgErEQYmNtYXAAAAFcAAABNQAAAwL7exsoY3Z0IAAAApQAAAGVAAAB/gBpHTlmcGdtAAAELAAAAIAAAACrcTR2amdseWYAAASsAAAXLQAAHqzNXC/paGVhZAAAG9wAAAAyAAAANjX3dnBoaGVhAAAcEAAAABoAAAAkB28GF2htdHgAABwsAAAAogAAALjX7xkAbG9jYQAAHNAAAABeAAAAXrFcqLptYXhwAAAdMAAAACAAAAAgBGcC5W5hbWUAAB1QAAABHQAAAjfgcoKacG9zdAAAHnAAAAATAAAAIP+BAFpwcmVwAAAehAAAA3sAAAVoOwfxAHicY2BmYGCcwMDKwMBkxWTFwIBOM8IBAzbgACJYu0Akey7jY0wFANXXBDMAeJzlkblOxEAMhr/slT2STfa+j2TvC1FtsRUg0aAtEAiJDtEgkCgQAgTPwlNQ0PIE9LTQUfIAoMHZpKKEEkv22J5/7P/XAGF8r6NJRPuUSjLNIMKHNPq0JYtJXGPBNkt22eeAQ4444YwLrrjhjkf1pZTgPdw6myvcXoA75pRzLgV36+PUu3r1tqk39SDxRT2pZwJT9+LXPgsxl/nqXATXczbYYkeyZdAxMejQE2RX2A4YMsKiJUwcbBJUaMq0kqgoo4vOqqjJUqNAjjwhUkRJ0vh3etFi3oeHwpFoTI8nkinDTFt2JpvLF4qlcqVaqzearbjjdrq9/mA4Gk+mszSm0em5Xa+2fDattmMn/HTmjaPSZApFvzUhXIqUdSEhu7K1Qk4IpKJkSDb4vY3/8PaHfQPcr11tAAAAeJwlUC1IQ1EU/s49570HBhFZFYNJZBiGyLAaxGAYw2QYhhcsQ4aIDFmQIQZ5QRAZIiIyZMEgC0MsIiLyeGksiEEMIoKIQRbF700O93Lvd+/5fo7MoIOYdYsWjqXJWwhgncipu0IdG0TuJJY9lyXWxDe6/LmLWFsGWUSOKPDkOfxIEW1y5CUj+cA32JK1rWAde7cEs1axxEpWkZyeectekyuv924UjxhHR15QwbV+aE5vbN6G8aKJtvBGFSN/jAjnqNJLRsqouaorEHnwEjRYZb4nciJduruWHfRwpOYWcCI95orRx44WXQ3QnAvp/4FcCfsbqBi8ngzh100Ro3tqrQ72Mc16vUF9o0blIs79jp8JJqiSTqwpd/LpH+AUXV3RdX2Wuk3YhS0g+p+AlhCRu5H2+KFsMXta1ZTdbVpJWviwUrBK7vs0ETXbrsBEIW64Nv0RZpqTuu7Rafo6hiRYtGn2kyHYZmqgrDNY46mKS1whq4eIyDTI6896fXYe2yszR7Lv+kh0HpMI7YuzRgY4/AOs54M+AAAAeJzbzs7GysLMxMigoyCwgUnVM2WDQ2CEwolIRV0dNK6CALvCBoaADbyVCjv+/w+IYJFmjdzAKrOBWZVjA4uq8kNckg91dbwDIhQ2/HV1gZrqmuACFAuOADJBPKAwUNzVBSwHsnQDqyoQeSZsUEjOUOgS6FK26hJItdIFAKovMmB4nIVZC1xUZdp/L+c+t3PmAgwzzIWrqMkEoqImJ1rJW0YbmVgompFddjVJLfEXF1eQFVdRUTMv4zVDIyQ/FwzNivWS+tWuuJu79Vlq2W4TsX321Rczh+99z4CXdn+/j5kzZwaYmefyf/7P838OQKBU28iUsnsABjyIV41ML+B6ocBWIAZkdHaF7gZyV6grFLApfiXFr/hLGRAuw67wF9pG3vzjdwu5dIDAGQCY1exFIAAbGK3GwUYZNIpVVlkSyKewTlOuAtwiY5fDocxwSInNuRtk3KAfqhosDq8j1zHL8aaDhcVQycockT08NSnFn8k47MwQqCTB9drqLVtWa6Pg6V4Itb5e7QM2I/Lhutqadfuu/u3TK5H9AIKjAOBJTDlQQEC1cwYeKAZca24TO3iJE4CQb5XDnaFM8q3XboQ6u84p1pzA4QLbDhsi3zkMJiVyDiVJyXKMg1mZMbF4knfi0K2vtbePPrrCNsyND1uVs8cjrUxJc+kTLAsA8be87ypzF/k+CaSADjXN6TXEimbweizXblZ8Nd6j7vakNqU+1ghicZxJFAxeLNjHpxL3z3WFMjOVHBqAzms3wjdC8sluuVvJUXKISeqvAwkBT8Ab8AX8gcTcNDVB9ahe1af61cSChAJPgbfAV+AvSCxIW5C2IqHWU+ut9dX6VySuTQum9aR5Bt468KaBN5R4SrwlvhL/As8C7wLfAn+lp9Jb6av0xxUT74nr9hgS9XvgSCUp20xikZo9fESWn2YhkeOz9ZCg45cPVs1/pb2tLbdj5cGzkV6IXttUcqTwyeMz/rsHZZWWzym7dDh9SqSqqXT2u7uOnbBWrBo2rCktLQxIbp7vu4qvk1g5Qa7qAjVwJWOuMa2U2hWmPZYEKZ63msAE+/h4OXwtk6KNpEjWbnTL33dTeLhkV6VrrSvoovBwRHOlGzzSQY0Figz8mTH4+tRtBW+dPPlWwbapD+wtjmh/hndB7pFdTPbBIUOunj9/dciQpuRkOA6aoRWOTgLUrpEkkd+x2wliR6lOMytY8OtAgR1CrWQQRAJbQbaa8wlkx3aSe6aestCNsQRGJH2B1jcdkOLV7/Ar9pgx0EHjRgKYpcAlsFxbMbns2LGLu2pr2e3ae2siwbqpW3b8CZWsgeOAjp93iQEvcXa95oaoZu44cwh0IBYKDMgXyFdGsRqmBSKLqlgglogLRBIBW5aO06R328gPU9Ib5Ox/p59HYsxUkBjbgQssUJOBA4o1wkrW8Tpk243w7bh2a5ux3u1yIMEhgMnIahnvJmAktUAqIRryazLBoXyjm5aGmp6bsCAhmPBRQk8CmwtyYS7KdeS62KF8hpAhDpXmg/lwPprvmO8Si5+nafF74EBGfDQjWZmA11PFMxXhVuP53z9zas4THz2r3dBOwfTwFci3ob0rt7Sb0cwZx08NH948eCgcBSVog/dpn3ZuOty8neaHcsoqwikGMEx1cI0MagRVQiPzhsRCkcduwBgpnXR1dtLEEF/k7kCr10SyYqNJ6T/O4JZIPDoVyUE/hsexF5u0/KbI1SY9/2PI57/ElAADvE/NZxWO5xgFMzw9sQxEECsIQYNC/lNSRAnSk0HiBV5UBIHPk3gGMgJ4h0X9z5DAGeWuyS1S4eQWS+Fjk1tk+qAUPja9HXBAHVU0ucVeSJ/3nRhV1NnVGWVBkunYnMDkh6fzMvsNLwv9B/vNz18XJUJ1s8QwUjzjkFKle5i7pUeYR/npUqm0GC5lFvMvSKuZaukVZgeziV8nrZX2wdeZN5m9/G4pKLklzLCsKBnisYN1iPGGdJzKpoiDDT7TaJiDR7LD+RFijiFgmojz2fHiJINqKgLTYBEqwo+y07gifpowTSwyFJjmm16EFaZX4Qb+ANzDt5g+NF029ZkyikGxiJJESO5ZImTmas/CpkvaUe3oJfiWtvASTIfpTEnkcuRd2KZNQJNQjPY8XENzMJ9wwymC2zRwXR1rMiKz4WGvh1QfLz3s9XryJIPHyzgIZ9Qx9hpHXRzljBTCGYM8ksHr4sEvXYKZF+yJ4wdRfu8KXSPozcnJGSCR7ymJWAfia/6GhJzXH4sSW0EaQYr6K7fkNriNwwiohxqGGseIY6QxhjFGgw/4YDIaJA0yDLZl2DMcg2MGeQZ5033p/uS0GqnGUGOsMVkpihDiJM6AjdiEzdiCZezE8diF3UyCmJaRnps+K70ivTJ9bXowvSc9joTp+Vsc5oUe6LBzhDjSsvX6IZSbQboRpV/CaKum7p9RVzdnQ27n3h8+nvH+c6UnZ1fXP3lAPbD5s/8sPczkNg8aVFioTvSbB79St/VIUtLx7OyihyYXpFiSG6u3H/QAHeOfE4zPIDUkAVV15OEgg4JsFQ+CouDl3Bh4oYFC1kJxCSlGQ53hEC2nTL07k7AR2B22YAuDikf6FTY7JYsWlQYnaa/AJz+Ak8J7mpiyCW0TfrrYpPNaLeGhNWwPqdlYkKTauKAVBI0N1vo40W3xYLfDFafTTn+CugMwESmyNSvTqsgoLZNSR5TS0aqt27aR+7ZtvVDUfujt1X6AIlugndfOkeM8zCK34TArqJVpNVqtVgZXw5fgUria+vw38tAMNMKtyu/BcgSdII6Ro24FRhLu/NuFC5pGbO0h//c+k6RzsJtw8HJmH/l3FmIGxN3kYGKs/iZKuj0XLtC3Mkma7ivhJ7ZFn3kUylB04CFzj4BkiU48mXTgsereKlFM6p/VWmLT+0aWzpP+FL9+Todw/Q2YDb3a59pZLQ/ugK1wozZPK9Bmsxm9S2AcgcVQGLtP26RVai9rG/Xc3kNyW0H4iwO9ahpWGJZBCkQsPWHEAQ4qAHB5CBOO4liMIMsAPkpQJNtggJEmtzh0igI6LemcFMr8t4xEGeh3E9AzqBxVoBpUiRrQHkJ65ItELJIqdcB4HM+kglSYjtMZn5ANsuFoPJoJCPkgH07EE5l8dgKnCtMos+AipkAoBaXwafw08xQ7jysRFoEXYDkuZxaxS7kVYAWsw3VMHVvDbQQb4Sa0BW9mNrObuP3sa1yLcEK4LPQJ40hB2QjhZMGke96HM+HM97XHf2JKwoX4YG9Qj9GtPpv4e7AJQQHk38SCapJZlS1gS9gFbA/LRZsraayc/X9DAz11EeEmiuVJBMvtVtBubKNYtloewlbH+J9hWU3KdZaDcq6CrxAqxAqpwlBurDBVmCssFXKFUm4NOnucym0TFyn3OyBftuHggcb1Bw+u74FWrbvnn9q3UMGXr585c/2r06f+vlU7rYW0b0gDzSF90g5H6Rg8qk1j9hAbZeAG41RXfDsw29tZoc1cD4/hjgTFarg/lkwyKD+B9srMqLXXrt3oDMmdxGKxxFPpCXo+8zCwOOXmBEysQYSVoD4BRm2FZWQaPlR+DvT1nSs/hEa9tm7da/TYH2nmpKa5s7UO7Udy65gNvz57/fpZckT5h8zlzFxinw2MUJ1YBNgMuVqz0mbskCASwFQ6G+frsoCaljGWWqZQxj5c4vjQQadzYlXUjlsDOjO3bdmyxoPt7XlvLXr3JNoTeRxt37H9+J5ILRnRn5z7bbQ22DH67FCqciaGAxLpzZ2fkFnhcCWokFAxUFkM3hQ52oADk1vyCqardl7hOFZUJIOkVxOpHwNgeTl0867ayZ94IIgMD1iR4SCSMAct5KdIh6HeAJNg1SVYBhdd0nwIXNIe14r+ihzsxchFNCSSFf4RlUdW4AQ9dwRfewg2DSR3ZALF7UaL2B7nqLe0uTY5gdV6f5yRE+Jvy1xGSE/cye7AkWjeMInP7Um6LXlplLLwFwN5ivzuVvZGt7ejjP4soV/elru5+4k1UdzPIM/kqF0DmKo3t8FNWEfT/QRX4xN09Gdm3rSr8w67lKx+OYH0eTAGDmCemIt3tbWNPrTsbB/oO7vsUOQUsXD/fmIlPoJm/m9o/9zZ8BdQILdfzNYcA3CK8m0hyamN2HVIzRYFHkscmdgwqzAMzuMY4MCMo1G0N5qqDAzLYUUE7hgzKzmdjJJrl9xGRo8lmRTICKBEOXksbXTWHHq7xXls/4ygeuiMkLfUBlnAQhZxmNd5zo5iSCBSQApMQak4jUvlU4VU0ecZAUegfJiP5rGLCIstsa3kVvKbuc28l/AUafaxtiQ8DFJNq/h9MaT135S7ePW95ePOX3pn0qoXP/kAnoYgvDxSp61rbFyHOmLWvqzNgxUb50Tq2It//nj1UfRgpLt2+fIVN+uL5MoGht9ZX5v+fX2FBuqrtSSqX26vLuX/qS7OHtlOyyv6vXwCqetEMENN5axinAVwCbzDWJvgw22uDqdMFLhFELgCRbAUuOMIjJP00IeJ+rfqcSelrmspaoxqCyQXJC9IXpscJLd3ki8n9yWLxDrdHsftNv4LFaSPP1H95vH2hYvW7GtfuGT1vvb23JaXlh7AdcsWf3+Fmr5zKzUdbd/16ju7dYJ4as6yKDdlkCL8UY9dkepmZWgUXudgLdhk5jokZOMBL7KCyWKYQsLX3zQN0aZp1p/TfqlLw06rjqRrmWHSBTLJiwA8ojoKHEEHLqa6kEuAVIwkUXVIZzv0Y8sTD8AM7Y/tLS3Nxzj7KwXznlgTzsB/XDP17QOUuwin075ugavU+3gBiQqwUOkBgMWsWIDFpBhNgJ7MJkJVRsVgkPJMBlEGBrYWHzMbOmSzySiJHAaChbEY5AFRIuh93nCbFNF96IwqEflaJp1UlDsK4XY5Qs7sN7GZdAro4QArcCI2xUixJtmUZMo2TZQelKaaZogzpGekWlOlab3JKgFihIE1GswGSyx0IJmR2VjJbrAb483xljSQTCZsH+Nj04VBYoqUbEg2ppkGmwdbfMpIMjlkowATYEdJIwwjjKNMOeYcS0C5F6hQRSpWGZVVOZVXhTxxvHS/aaJ5okVVCsFD8CH0CC5gCohmeYRolkfFR6VHDI8Yi8xFlgKlFJaiedLT5qctJUq58KL5RUsd+K24wrDCWGeqM9dZXhEbDY3GLeYtlj2GPcYD5gOWFuVD5bLSpzxJ6pc1k8rNJvWaCynRZ6H1UzcsW//clMIsvzYmOnzMO710y4SaQmZqeAN+LooxOg/vIvNwGni5X98gT7/AQbcEDgSOnfYNcY0K0wg2pDTc0jeJLqf5Lt5pTxwkf9IZCt+hb64RtP1Pt3xSuVPfyAMCx0KGyuIj3vSM9AfTcfHPZQfj/1fZkUwLakLZuVl731qyb+mVv2ifatef+bayPLTwjY7aLeVXPoCx3z/9V3bPH0aOqFz8xJNe55BLRy59Fsj4aHz+ypd/vcwbd9eJAyevpdLeJhOunke4GhHl8Z56L1Ag0OdTlrZVCUtAQQBjiSdKm6O/FBUsCfQPeQDzjRBXiSzhd44hYysQWYmolOhoOvYaZeubAO2Xyey/qGbiv8+ok7cFWpCFtwgWMB0sBgtAPRB5KBAqF5kY6ETT4HRUYHwKzkMvwsVoGV7ILOFfFGrhSlRp3IxewRuZWCpuoZ8OmdiPk1CH1o1StPIvUM6fVkZmrbzImiNO3PzTEFihVZGcY31vEerXBT5wn5rkBI2S2Ggl6kB6w6sYBGRzellgdsewTvcw0qOsjD+6GO2ijSkqFfR9BqFpS2J0zRTtEzefpPgzaQPh9VQm+eF6+Ivd27bt1jrgkA0NDRs0A2Ku/1S5rHGv1tMb+QqdiXxau6p+BSrVxs1f+PyCfScO1e2y+85uPv1XgtGyvqtsGsGok8xo8aad5mapUYE7QTPTGNtA13NOEwjY5XhqYv+we0OHXuCwxeV1of61XFTP3L4EIiayaaXXq/uA1gNlCKqvlz7zzW+0N7SlsAY+XPMNO+firJnaKe1j7ZJ2auasCxMmEN1DMgF33K/PtnNJHPfoGDKBKjUBmrCJYMZEEGLggyzFCDRKwM0JjNEsfzK5xUA4zqRznJHyWld0VUeZuYsMeQOoYc4QjJyhLDbYAAaDCaAIPA2WgN8CPgYOIdplCB4Bp8IHjQ+apsFSuAguxSugKQoBnEVVIO3e2ZjTENSytYsXz0Rmsinhq/h8OGu/FoQl7+t1TxQaM4nE1A22qGnOeBeOcxOoAwr1PHmnssEUtDcwIEgKRUJQcsfKmEugbcZBfIiheyO77giO7opCJ05EuyZt4zdCt8FfL3WoZj7CTGOn8UuZpexiV62TZwDjZOIZF+t+ASzmFsWXuV5wV4MaZ3V8tavavR/sdynEpRTSlrJHgJHj4O3LXobiigOwDr0bnkKEddbsB16rmXXhxaVd07+C9vGPObUbTU1NS2DD6F9tmrhkY9595+7O/Oq9x/cuSNC+1n3fTjhvLslbApipJjHxvFIjJ8QHeXtQrjOhIKgy1fN7PLFuKGE3kGTOI4chdXrAZ5n63L+TkGmzIv6T2VIXLgR4X3bLWqesryn1PZ8+8zrs4A4+o858ip2R4NDpQ3+CyVqX9i2h5xknnn3jgw/eeGhnIV0ErrNYtO5//FP73uc7e3fgyNatR5JTdfu3EvvLSO4GgQXqMOCwSTWit8ZnCzpMQXE95w761ic1cPWO3ekxbhvAdqc71Se7sd0rcuk0hbc8EaPttYuuAGJ11g7ptP1lt75r1X2AqjjXM9s72zfXz+hD4s+pOdp0fp4gnNuwW/tI+2rmqWcKT//q+Kn2vc1HGrfv3vzw8YVlZ4q+hMbf4RRv59pPv0tJef/uzI1rftO4b8mCsvLk1MM+3x9blx2g9bWG+LlR39Ukg+lqso0DphojCMZwQXfMXjlorEtscNenGBNFt9Njc2O/15VCOIA4cy3af8LXbrmh2s+Cs/A8Oo/PM2fZsxzJcKsHFd+pdqM9COGBlN2kCbRn5Y4dK8kBxSmvTjl9wTKm9dnPIav1XNEiWjcsgK4pr+IxR3ftfPvtnbuOopfaklO177RvHy3Wvv36S+0f+vJnDtzbv/PaT2qP9h4OPKHGsQrCSJdzeSzBHmYxZCDgeDl8rjN6Gea2eoouOWgKpx8DPFDJh5ExkGRRGTmqSLVOR5DD8WwOO4F9CreAFo6n+we/g0g+/358InLlAtQiWezFaT9VsUOA3gtWkRiv0mOcRObN+9SUOBLhNC7ouStobfDUp+0OxBmTB7sdyW6L6Ha4PNht8bsCdJlJFZV+ZagfN/orOlveFtCUga59qxUkJpMR03ab1kKr1u7du3btvr3a3uoG0Pdfl7WGqnW7tR9++EH7Yc+EhuXV69dXL29Af9hSW7vl1ZraLdN8rZVvffTRW5WtvsSTay599dWlNSfh7Beqq18gh87LVcSnWuJTnI6bJN7rhDXAGZT2MkFQF+MNyg0x9Sm82+23eUBiotukw4Y4MLAp+ZLuZaOoiel0vhd/wnXCfSLhPU+nl2+ydlj/biXTSvFIvQCsNv0aT/Zw0L8vS0yFA46RKHw+ZetkgpbRrc99pvVC+QrEUNEOaV9M2QrH9SPKS7ACTdA67XFo+fpLGKMvDHdoj3nQpgE8Ucw0k5n7CzJz+8ADagppzziGDAhGDK0WrtYdUy/BDnDM7xStRE5N9RJhle+PaqrO6OUTMjuPDX1CB2ldzxzxJpYkfphIZLCNqKpoMgaeRC9bpaZFH5Xmtt/WbmhsS0oRfe70iUnjf2nJbJhTumawNo2TIhMaNuzfj1aHd43NMRg3xMZMLXjwwalTI3/Rcd4X0hIYu3aQoMzyH+B1CBAj02shXaEAJLzO2Hs/1g6uWROtiVbS49NJTShAVWMEpBgA22iuF0GVVXBLo6Ab3Gul3CUXDmwCQ+HQTU2Qo0sar22NbYcN0y3ZTY9IRkheWs82v/9e81ntsval9oV2mb0YXtRz4UIPXhV+XPtE+zMcDJMHruc8Q2xgQYpqpBdzGOjGowHDUVahbToUUMUAX8BX4kqG0ddx9ALOB+gv4VnsxZ8uNv0ffH7R/QAAAHicY2BkYGBgCqnauGH9rnh+m68M8hwMIHB+940TDFDw/80/WXZZNhEgEyLJAAB56gvYAAB4nGNgZGBgz/0nCyRPM0AAIwMq0AMARC8CkgAAeJxjOcuQxnKZ4SSzF8MulucM1SxpDIXMygzmTJYMB1neMBQydTMwsPIxnGTZw2DNos2QzyrO8BCI24Hit5k2MXxg0wTL2YLVP2UoZBVh2MUqBMTVDLZgtghQrJ/hJEiM/TTDLqaLDPog9UDxdtZKBgHWWqDcNIZioJkpQDwNiOcB8Rwg7gfiFUDcDcSNQLyOheH/G9bbDJtYShlOAgBSZCy1AAAAAAAiAGIAmgEwAXwBugHiAkwCTAJ8Az4D7gQmBGgEfAScBNwFbgWMBd4GLgZqBrwHCAdUB94IGgh8CMgJrgoqCqgLAAtMC6oMKAyIDPwNaA2uDhgOgg7cDvIPNA9WAAAAAQAAAC4AMAADAAAAAAACABAAmQAIAAAEFQIWAAgABHichY/NasJAFIVPNBHaQqGbbpu6N41CtwUliIhKqpL9YH6MmBnJz8J136fv0Gfp2nfoSTPtxkUmJPPNd08ucwHc4xMGmvXEt2EDDzw13IEFV3MXz3jVbDITaLZwh0Rzjz5n0jBveHrDh2YDfXxp7uAW35q7mOCi2UTfeNFs4dF419yjT1bK3qnTOU+TfWmnMlZ5JspUSTtWlQydybheAy86iKDaCFmsVSbk3I9CcbR9bzqabZcL+yp1JYIoL+quQ8e9qmEFBRs7fk84c8yUY+9R0qWQiOlzZBA0KVnS164ihXA46Pj/GcBDhAOzAesb7hIF1kxnvzyHz3pIPrKLz/QUI8ywxRILmvZe7YmALuf+d9ch7+i2//cD/TZhMQAAAHicY2BmAIP/dQxRDFgAACsZAdsAeJzVkvlTlWUUx4UPp4S78N7LBSWQonoVIUBvCYagl2tFQFqGptbQtLxt1rTvdo00UHEBU19L1EzbFNsTsNu+OFPa5jbti2J72b68zRx6/oJ+bTq/fc/5nHnO9ztPX2pLbOBvxYvwl82fUf5w+T3Ib8qvyi82Pwf5yeVHm0PttXJI+cHle5fvPL71+Eb5uoqv4nypfBHlYH+THHTpN2B/Ewf2l8sBj/3lfK58pnwa5ZMIH7t8pHwY5oME7yd5T9ln8H0J9u6pk70J9tSxe1ee7FZ25fGu8o7ytvKW8qbLzh0FslPZUcAbUV5XtreGZHs+r+XwqvKK8rLykvKi8oLyvPKc8qySVJ4Jsa3Nlm1KX29S+pTenmbpTdLbktaz1Zae5tgAPbG0rTZPK0+5PKk8oTyuPKY86vBIkC3dtmxx6N4clm6bzWE2maM3eTysPKQ8qDwQ5n5l44agbIyyIch9DusNst7lXmXdWr+sU9b6WdOVK2sculZb0pXLaot7MrhbWeUGZJXiBlhplla6rFgelBVFLA9yl8eyzqQsUzo7mqUzSWdLWsdSWzqa6YilLbVZoixeVCaLlUVltBub7bUsXOCThREW+JhvGvMd2kxSbTatIe5U5s0NyTxlbog7lBbldiU2MCeRkDlKIsFtDrOnZstsm1uVW5Sbg9zk58YMblCu97jO41qPazyuVq5SrlSuKORyZVYoLrOauEy5NMElRlysXKQ4yoXKBcr5VZznca6fZuUc5Wxl5owMmekxI4PpObkyPcpZyjTz8rQ4U7NpSrGkaShnRpjSkCVTlDN8nK5MnmTJZGWSxWlKo5k0Kg31ljRkUT8sIPUWpwaoU05xOdnlJGViaqlM9IgnqW0kpkxQxteEZXyEmupMqQlTPS4g1bGBTMYFqFJOVMZWRmSsR2WFJZURKsb4pMJijI8TCjg+QHS0T6LKaB+jyn0yKkC5j7LSdCmzKE3nuCglxbaUOBSPDEuxzcgwRSNsKaplhM1w2yfDM7F9HKscoxydSaHxWRjmKIcjPQqMhQKHYQHyTYL5Sp7HEXFyjchVhjoMMUkNUXLMUk4u2UpEyVLCBggrIeM1FMdKkOkQVAL+HAkofkP7c/ApGRbpymCDDVYOj3CYQ5oZppkfkI3poqQanVpKisUgJaUvxWldklLyf6hB//UB/1rD/gERC48YAA==) format("woff"); } Practice Exercise 10.1: Develop an Xbar and Rbar charts and determine if they are in control. Samp le A B C D 1 14 2 15 3 12 4 13 0 2 12 4 15 6 14 5 15 7 3 12 4 13 7 13 0 12 8 4 15 8 15 6 12 3 12 7 5 14 8 12 8 14 0 13 8 6 14 9 14 0 13 3 15 9 7 13 6 14 0 14 2 14 6 8 12 7 14 2 15 4 13 3 9 13 7 14 4 13 2 12 5 10 14 5 12 3 16 0 13 5 1. Determine the estimate for the µ: __________________________ 2. Determine the UCL for X bar Chart: ________________________ 3. Determine the LCL for the X bar Chart: _______________________ var isIE = false; var f1 = [['t1_1',665],['t2_1',1958],['t2t_1',1771],['t2v_1',1754],['t2x_1',1830]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

# Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed