Bangladesh The graph above shows the demand and supply of socks for the country of Bangladesh If trade is avoided Bangladesh consumes _____ pairs
Bangladesh The graph above shows the demand and supply of socks for the country of Bangladesh If trade
Bangladesh The graph above shows the demand and supply of socks for the
shows the demand and supply of socks for the country of Bangladesh If trade is avoided Bangladesh consumes pairs
Bangladesh The graph above shows the demand and supply of socks
for the country of Bangladesh If trade is avoided Bangladesh consumes pairs
Bangladesh The graph above shows the demand and supply
Bangladesh The graph above
Bangladesh The graph above shows the demand and supply of socks for the country of Bangladesh. If trade is avoided, Bangladesh consumes _____ pairs...

Category:
Words:
Amount: $25.31
Writer: 0

Paper instructions

I am stumped with this question. Please help me to try and answer it. This is Microeconomics I am scared that I am not answering the questions right based on using the graph that is provided in the attachment. ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:207px;top:87px;} #t2_1{left:226px;top:87px;} #t3_1{left:226px;top:443px;} #t4_1{left:226px;top:461px;} #t5_1{left:258px;top:493px;} #t6_1{left:258px;top:511px;} #t7_1{left:258px;top:544px;} #t8_1{left:258px;top:562px;} #t9_1{left:258px;top:594px;} #ta_1{left:258px;top:613px;} #tb_1{left:258px;top:645px;} #tc_1{left:258px;top:663px;} #td_1{left:258px;top:696px;} #te_1{left:258px;top:714px;} #tf_1{left:258px;top:732px;} .s2_1{ FONT-SIZE: 69px; FONT-FAMILY: CAAAAA-DejaVuSans1; color: rgb(17,17,17); } .s1_1{ FONT-SIZE: 69px; FONT-FAMILY: BAAAAA-OpenSymbol1; color: rgb(0,0,0); } .s3_1{ FONT-SIZE: 43px; FONT-FAMILY: CAAAAA-DejaVuSans1; color: rgb(17,17,17); } @font-face { font-family: CAAAAA-DejaVuSans1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAB3UAA0AAAAAKTgAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgErEQYmNtYXAAAAFcAAAA+wAAArYq8yGQY3Z0IAAAAlgAAAGVAAAB/gBpHTlmcGdtAAAD8AAAAIAAAACrcTR2amdseWYAAARwAAATcwAAGYDu8SzaaGVhZAAAF+QAAAAyAAAANjaAdnBoaGVhAAAYGAAAABoAAAAkB28GK2htdHgAABg0AAAAggAAAJCjCxHnbG9jYQAAGLgAAABKAAAASnXkb4JtYXhwAAAZBAAAACAAAAAgBF0C5W5hbWUAABkkAAABHQAAAjfkc4SbcG9zdAAAGkQAAAATAAAAIP+BAFpwcmVwAAAaWAAAA3sAAAVoOwfxAHicY2BmYGCcwMDKwMBkxWTFwIBOM8IBAzbgACJYu0Akey7jY0wFANXXBDMAeJzdkbtKA0EYhb+97+ayl+xmN5dNYmKwEkHwCSwEe8FSLMVGbMR38SGsLLUU7KzT22ihtcjvv2ZBC9NaeGDOnBnOzJzDABbLUWIoY1zrqlJP2DzoPGdNla08Z5Mtttlhlz32OeCQI04444JL+RBR9yrXMaecL13yLO/yqvwmL3InC3mUG7mXW74gV/X7v6OlOTdqbRJS4OKRa76AIT0cUj0f0VanT4eMmOQfNcFwq08yLdtxPT9oNFvtMIqTTpp186LXHwzL0XjSnM7WJ/XVJX2YVXV+ooo1hcH3TgPGtRxhhoXr5XagOZzUijSC38nihO7KNn+KT+oCXYUAeJwlUC1IQ1EU/s49570HBhFZFYNJZBiGyLAaxGAYw2QYhhcsQ4aIDFmQIQZ5QRAZIiIyZMEgC0MsIiLyeGksiEEMIoKIQRbF700O93Lvd+/5fo7MoIOYdYsWjqXJWwhgncipu0IdG0TuJJY9lyXWxDe6/LmLWFsGWUSOKPDkOfxIEW1y5CUj+cA32JK1rWAde7cEs1axxEpWkZyeectekyuv924UjxhHR15QwbV+aE5vbN6G8aKJtvBGFSN/jAjnqNJLRsqouaorEHnwEjRYZb4nciJduruWHfRwpOYWcCI95orRx44WXQ3QnAvp/4FcCfsbqBi8ngzh100Ro3tqrQ72Mc16vUF9o0blIs79jp8JJqiSTqwpd/LpH+AUXV3RdX2Wuk3YhS0g+p+AlhCRu5H2+KFsMXta1ZTdbVpJWviwUrBK7vs0ETXbrsBEIW64Nv0RZpqTuu7Rafo6hiRYtGn2kyHYZmqgrDNY46mKS1whq4eIyDTI6896fXYe2yszR7Lv+kh0HpMI7YuzRgY4/AOs54M+AAAAeJzbzs7GysLMxMigoyCwgUnVM2WDQ2CEwolIRV0dNK6CALvCBoaADbyVCjv+/w+IYJFmjdzAKrOBWZVjA4uq8kNckg91dbwDIhQ2/HV1gZrqmuACFAuOADJBPKAwUNzVBSwHsnQDqyoQeSZsUEjOUOgS6FK26hJItdIFAKovMmB4nJVZC3RU5bn9H+c/7zkzZzKT92Mmk2TyQDImBAggOY2AIIpBISWx0AAhArWCUooQugJ2kRClRYUQoAi5GN4pL6nO2IBYUgFBbSu4aqvLtsRSl5GmXnprITm53z+TAN7bu+69K5lzhsmcme+xv733d0AE1dlbhDrWjiiSULKlCzeReBPLrIEIqLDrUs/dyHWp51JPKM70m9l+018noL5lNKXvU3uLZHz15VNiHlx5HiGhh11GMjKRD91rBZJQi6q0uNfiFvWnGaYmk7ikDIaM1HiWlDpcQaluwe/q6ynqg082E0pLS+9GhT0913tc10pDx52ZGM/Gpr9oZMmInMCtJ9n+onivR5TSsdcjBPx4E57w8ksvvWx34oLNL7yw2daIcPXGmtUte+zem/1/Ief7P256bsM6UmePX/LUk0v3nj7WvNvju7D13O8QQfUDV4S7hHqkomzUaQWTMrQExUAHEsSIYfoaM15PjQTC5oYEHSXQRIciaxlU9kzMgYgvXuopKjKj8XZ1X++DiN+65rpmlpql7tKQ9UQoLZQeygj5Qv5QZlnQSrPSrQzLZ/mtzIq0ivSKjApfhb8isyK4NLgurSm9KaPJ1+Rfl/l8sC3YG0wfunTooqELatJrMmp8Nf6l6UszlvqW+tekr8lY41vjT5wNZcoUvZ744qKR9+BRZqDEwIHMnJIRI4v9vGKZolQyHhcXxZNTn3SsXbItEg6Xda7vuNB/E5N9rTWvzlhwqvrfe0lxXf28ZR+eyHugf+3Burlv7j552t3w3PDhB4PBPoQweh16Wwu1ikMjrSSqIGpgsckww3qniomMpvH6TPLwbl4HsBSO677e1WO6E0pDJ2q873kJb2XAjEbjhSfF3mhEQm149eqWjkik/JXlb75F2vu/RXbu2nmqvb9JqDm8oPav0KMn7UqhGr5XQ7nofkCUnqa4G+PiI04ayQmEg51KxHkyOS0nCcn6faLb7ZuY5+rrAgwVFUWb08PjcNmXr5nu0tLQqzX5a/Lb8ilEEwslWrQEF/Fn5gRL0nG0grx6xHS5Ib6EkmK6e0/L5j17NrfsCdv2jbkd06fvfPhnJ0qPr363r+/d1cdLw+Secx99dO7sRx99bv/J/iwt/ZVh+SffeHT+PDwGUyzgMfPmH+T1exMOK0UPTEnma6iVYBlNEqBaHPEhy+FiFqtgNWwp62Uinh1XbAbeDIdFzz97EK8B4LQarnWhVDTaSkqOIMMTYfIGI4xbaYKAZHKf6dYmpsHnDSYeS7vrGmScvia9LZ1nbBYPQgOSQ5AcjiYfQwjdHQ6PObb6wgAauLD6WP/ZfS++uH//iy/uo6+SOf/s2V87F0/AMvxMmGt7L1y9egEeg3E1QG88KAUttbKQFyuN8nrmPYBZRMc/T4y4w/qG1BQvkb0ymkrczomp0RC7oBlAKN3Xe7pdMDeu67w7ISuvLG1pWlvar9J601gZKsNlpMxblsKGSYVyoTJMXYKW4CVkiXdJijL7ScjH6482bJQXcvKhaE5IGo453oWGvuP6O68tPjtv/q++Y1+3z+K8vj9hKUz2rN8eMcic6lNnR4w4nD8Mj8YqjsP32h93tZ44vJP3acnAFXoWcgqiq9Y4h04M7ZGMdFkhkvpIRkZ6uaqlZwhe1IibBU+jtzkxYgqRbCCJ3HRVy0iR0MMpsiHJnsyJuRyGl3q6Oe5KB7N12X+/5vr7NT4VUx+ZJbmML4D1pOixKvM4CgLhWd9NVVO1VH04JDxMG6aPVcaqY7WxuuZDPpxFctVcLT+u0FPozY/PTc/NyPPl+bOCjWqj1qg3OtwIMiBEVEWN6tRBDeqkLppEk2kKTRXSlGBhXlnet/Ma8tbkPZ/XlteblzgbQSm90aLBLGRgzqpi4NYwADgK8XDMqaQonj43bX91c/O8zWVde/7x2+ozj9e9NfeZDQsOWYe2/uHduhNC2eHc3BkzrCl+I39b845XA4FTJSVV06dWZDuzWp7Z2ZGO0C0eASzHoRFf55HWf80jPUM8crzGi/8ri5j/C4uInv6dnEYQHrgB3/sZaJMELGKIpAWtFbBFU5HFZNel7r5u+C6YnRCeelSdMeskSJgFwcpIHjg92hw1usqKQ0oGcmEXyZBciqUsVXYpymzq9/ohDr8o/LX/2oX+a+zywRuXWcFgnvR+wJGJQpZH1CRkarTJCCudkirCx05yc3zwUQVcdF26yAfgREXcrjjOlLF+3KbJBHp/xpRhO/ZFImNeXxc3PJWecJsXTvUfB5Ksm88Y4hzxOvBkO3wf54jxVsoQR4SNDfgk7UwDfrgvyhSTOEsURYvr6u4eoglLifHEH9IFPDv71jfDVBFAw51kiZdBFMfqL6KBgYv1x8hoYIp9/LG//7CoHqyda3faX8FP51z8+RBRxOIDrmiHvmsxDqMR3alEEr0bnOGU1iTkdt+XqIty8h3RDXLYW1/jsDsDuSPAoBcipp8OxdL/49sRjolESOFgJOThO+Kr3Q/RxDhseVRfEgAZcWLEjSJ62L0hUXE7p1O3d2JilLIGBxgqFShLqkf1YoPUIDcoDWqDVq83OBqMBmeDq8Gsd7cl9SaZdygyjFCQh4kCmfxIlm3uONSyqaNjUy9229d6/2b/FZv0k6vnz1/9y7mzn+2wz9k99hdAWKXASx48Ojoz9wB2G4QaJKKbVpCaAhOIiQnjJ0pEJGITIbGcUPQGExklmAlIcl2KIjkCH2CNrpp61DNj6lHvjEf5CwDpqq6EqNkqGmQi9oXkkgcf7IuqTGz9eDJZTOpJA2kka8gLpJ3I/IsUqgD7eXEyTRZyUA7Oo3mCTy5BJXgMHSOE5EloEp5CpwiT2GTRkitRJa6iVUKFXIfq8CK6SHiMLRRr5OXoe7ie1gvL2SpxHVqHm2mz0MwaxS1oC24l2+lWYStrFfezfeJR+bT8iTwgjweiiitWcDEO3HMGz8FzztjfuiHU9M2gHTfbojWqhBKUQI10/Lk1hc0UmaIqwkxVoTNVTSUzMdE0VTQlWWJQP1mWeOl0eDeUTi9XGaEilE+TdU1VZJEJUEWYWUesilOPmjMenXrUzQ9x/KDFCskrC4Shwxsc/GXX7fpejNZ3HGA54V+W+NY59pRXfICReBLPMtUSdQqZwiaplvooeZTNVCvUJ8gTrE5dCd1YyRpYE9lGtrLNaifpZO+Ss/Q9lsaIQkVBY6qsKXDSvSSJxgvJLEVOUTyaV89G2ThAgtQvZLNMMVPKloNKlurXAnopHSmMlEv1kDGJTKaTBEsoZ5ZoSZY8QZmgTtAswzJ4HytJhTCdPSw+LFXIjygz1JnafFSLF5DFdIGwmC0WF0tPKHO1x/QlxnK0HK8kP6BPCz+A/jaIq6QG6Wl5pdKg1Kvf136gN5H1bKPRilrxZrKJ7hB+wraKW6VtslW4Rd9l7EV7cTtpp4eEQ+yAeEA6JLfrR4yfkWP0pPBzFlbeMLrIGXpReJutjGIiBfNfHNBwoDL8508//POnYfv3H/7tyw8BHVvoYv642Ua39C0GjIwCIvqS7QTtAQYymOykB5CJO+UmVQOFB3Z0uQ2uPeO64Lcoto5cHwc0DVY/dPxITH845Xvix2Iv99jgqIpNvALX2+umLjt58vLupia20/7Fxv625mnbd/2G1GzE42/pnpQGPJOJqq0c0a0kOpGYJnn1pjQfDad0JrlAIZyyLFaYsrMiNRGoMBBdjfr6eqJuqXAcWOpoLFwMrbhQVkXW0qzns9rg542sT7IGshSILioX3js18r9Z7ryJp585ciry1PKNeyNPrfjR3kik7OjKVYdo8+rv//1PXDr/bQeXTrJz90/eeDlqxB+btzrG4YeBK2dFdwAPGmul3lbvDSru9IR10G6PNg1UfJKXk2ZpTN+6i26tAku8p/kqEAfKHSPHW540Bx/mIv7TcPjeY8vfPIffw6+Tvf1zd+061U7qb7Z11M3vpfujXAg6x7nQiZ+z7pVkopjIqZqaipDTMJ3I6TB1B+InwwGDr5sw9uUOTXEhjTXRk4bW6TIcuqrAtMtOwam5hiZcjs6uNkSW/HmUJ7vMhKh7A00a3O/+p2lmXyQU8TnuFRGTRYU64tUEh8sRcJQ4pqgPqdMc1Uq1ulhtcqxxbHK4VQRBwKRqhuZMwF7iElwsQfVoHj3ZSHYGURa4PZ/gY3lyrpKtZmlZetCRb+Q7feYoYNsSEhJCbLQ6Uhupj3aUGqXOkPkNZGGLWNQSrMEJLlcmqvc5phhTnJY5A03H08lMWiFUsEpxplQpf1P5JkzxTL3KqHJWmHW4jixUFxmLnDVmvfy08bSzGT2rrNPW6c2OZqPZuU1p0Vr07cZ2Z7vWrh8yDjmPmu+Zn5gD5gKYQ2bgAlwCHS3DmNM02TRt8+pNjz8wo9hvj40R9sJzq7ZPbpwhTOvbTB+PzUQhgOqrqBesslKZC+vyARE3oVZD7FRJnIQkhckOp/YAjOSgmA32x7jVn+iodrmjs9pd1AcKXcQXPfyq5a3wtnnpbD6nYhqOGTWYVu5lyVdH5z+IC+1fR44ePXxS9GyrWDh/Y18h/fXGaT8/BHGBJ6BXAedJqMxKAa+/XjAaHetV7vUTwOsnS24HmuyZmOzq6y4acgb2dW7tQ5bmTHGlrEl5PqUthfElZchbD20qURfgBzd9ddpLFa+89dYrFS9Ne3DP7H77A3wXFmfuFko6CgquvPPOlYKCg1lZMNAGduMxgVveeQfUS0WdVp5sgthLpgiKH3ME4AfKZRAy2olaFZFhQZT5lqlxGrnUZcb0qHtIjoRB4PKHAPpz3KXz9ePbAlHleBIkeaxAriR15DF5GVnBniHN7MfyJrKFtcovE7fCFJFoVJVyaVDIZQVigWTpC2mN3kzXgZL/SNwobaet0kG6j70q/VL6QPoH7aX/EHqF5NlPctI2OUgC4OVfj5Dsz/sPk+/09p+NiJ6+RfhK//X+DhLo/xjy/T0kfRjZsDObr6EfEpyEEm/tzKOKvYHfv/++bcP7zsP7NoG3p2j4a+gIwalIEDhkXLf8T+wabDlCg4v2RraLidE9+/zbb7PLNwo4v93e0SVUAFvCKeEY6iQMywKaJIMsxPisDxZ2je8AFUoN7AEstq4Dv/KVPRwWam62iZ7PeL92DrjxGYifoSRLpzvRD0Uq8CRESOLSRQBOXzQPGojrfb997cN2h30aw9ox0GOnCR67A+Jw/gwdwIgIrq6uu9ElyMDrLxE8N39rd2zcGJuhCaAreyF3HdeD70mO+Z5k8D3J3Pck/598z5F/4Xv+3wbmODI4gL4UicgIsBtS3Wouy1J96ngyno1QQ+oD5EFWDq6mCpzld9hjao3K/eVqcDRr1C2khaVJSCEyRYLIoGQilgRYlCQFKYKq6shIpl7BKyfpLsMn+JlP9Ek+OQAuJlvzGT5jHBlDS4RiFpJHKqVaGfcz4EXvJ5YwEVpeLpZL5bIlW+BpHtS5p5lFKuUqvcIAhNO5wjxWI9ZINXKtUqvWaivQ93E9eZquEL7HVoorpRXyUvlpvUFvMBpJE10PCF+nPKuBhxF2GUeMR4e8adSeAq4nXMRjcOkVfnjHbrbtX9q/sNnlm27hGn/cKGCuG73QO4oO2u8L3wW8+VEucOFJa2YmgaYFcU4u71oaTk8lhXmFKSQvr7A8znRlqil5QoKo5PsZSWiMFxuZGUh+Nr7ZhfKfZc3kLjleTZfykt0UKZkuhWIpR3YwMcQnQeGTwDhhxuyqi9tVZ1TyGJ8PWLMTxvUljLvezSelGzbS7p6iLn5zBswH6B6ot+m+gzlidy6GTpw/cIAOx/y2QYIZvWEwqqTYC/8A/gua0bsKEjUNOMcnwNIOSxE5UYsX/WZx3a+XfHz+dxdrZx9+5JEj37rywZUPar+36sk/Nqytt9/Hd5G77jphfQPjc1kdW17uND7/i5CRciR/uGDPDJzYceCMkyK83bF4VmXNZfsh84nqWQtjPqUWeLIdZoIgB1prpWEHdSBKHeWIalIbw3StgnUVpYqyoBuuj7idjxp4KIbOS3QpZvl4IS7BANzK+zzg/TxX+HwN5aPJqAotQivQs0iKxwWwCxXQkXgafkh/yFGJ6/ByvIquww7AhoL9tJjTA79TUEJFm2C7xL58+Xz/HJbdd4W+01e8327DNWeGNJEdBExkoclWXE5UAnV/oiNdNnW/y/NANnenRVz0XOO48gEtWKbiMA+4SXITSmwVM9ydmrNw3J+Liuxx14pADotCX5PA2zIYtbAS/wPXRHZwSBNtKSqLh4/OD+bgf35NH4c0cltu7sL5Ma38I9S6GmqtIsvyltM2gbSxtRJqU+QMMZWiDKxxh+Xk+MNRJu6KETj4KeAzKCwU9ISTOgUye5TfZCXZxdxh2/h+exte8Da+v6/9oLBscnjyjcsHo73dBINzlPXC9GShBVZBVroiCmpanIA8jXHrXS0JL4BQpCU7FCao6diRmiykQsNRTnJcNu+0zuOIixo7/p8O/J49B3bMYV/7Dy7i78BLCdxBrFRWqat8dHY2tC4uADUqw1Hk3r6hDqh2gj5LgGvcdOHCL98YXV1dWvzDxx96Ze6cNx8LfzK5elZhUBZF28YvbF/wTGVVyZy7q56YdG9n6ehf7HqgubKysCTJO24EQv8Jjv3r3QB4nGNgZGBgYAqp2rhh/a54fpuvDPIcDCBwfveNEwxQ8P/NP1n2ZWwiQCZEkgEAgN8MYQAAeJxjYGRgYM/9JwskXzJAACMDKlABAEcTAqYAAHicYznLkMZay3CS5TlDNasQwy5WEYZCJkuGgyCa5Q0QazPkg8RZHv//xdTNwMDsBVYDxixPgfJ7GGzZuhnCmJUZzNlPA8WFGNaBxJguMuizpAHlFzHsAuq7zRTDcBJkLpA9j4Xh/xv2lwwurOIMq4A4hbWZQR9IP2SxZ5gMAKV4JYMAAAAAACIAegEQAUwBsAHOAhoChAM0A3ADqAOoA+AEMAR8BM4FYAZyBrAHEgdUCDoIhgjSCUoJXgmCCaoJxgncCroLZgvEDBwMVAzAAAAAAQAAACQAMAADAAAAAAACABAAmQAIAAAEFQIWAAgABHichY/LTsJAGIVPoSVRExM3bq3sqYXErQlCCCFAKpDuG3phCJ0hvSxY+z6+g8/i2nfw1I5uuuhMpvPN95/+mQFwiw8YqMcDV80G7niquQMLruYuHvGs2WTG12zhBonmHn3GpGFe8fSCd80G+vjU3ME1vjR38YpvzSb6xpNmC/fGm+YefbJW9l6dL5lIDoUtZKyyNCiEknasShk6k3E1BtPoGPjlNpD5RqWBXHhRGJxsbzobzXerpd1INYQfZXnVdei4jRrWULCx5/eMC58p+OwDCjoBiZg+Q4qARpAlfeVKUggHE4z/5wBTRDgy67O+5S6RY8N0+ssLeKyH5BO7eEzPMMIcO6ywpGnv1Z7w6TLuf3cd8o5u+38/A/lhOQAAAHicY2BmAIP/dQxRDFgAACsZAdsAeJzVkvlTlWUUx4UPp4S78N7LBSWQonoVIUBvCYagl2tFQFqGptbQtLxt1rTvdo00UHEBU19L1EzbFNsTsNu+OFPa5jbti2J72b68zRx6/oJ+bTq/fc/5nHnO9ztPX2pLbOBvxYvwl82fUf5w+T3Ib8qvyi82Pwf5yeVHm0PttXJI+cHle5fvPL71+Eb5uoqv4nypfBHlYH+THHTpN2B/Ewf2l8sBj/3lfK58pnwa5ZMIH7t8pHwY5oME7yd5T9ln8H0J9u6pk70J9tSxe1ee7FZ25fGu8o7ytvKW8qbLzh0FslPZUcAbUV5XtreGZHs+r+XwqvKK8rLykvKi8oLyvPKc8qySVJ4Jsa3Nlm1KX29S+pTenmbpTdLbktaz1Zae5tgAPbG0rTZPK0+5PKk8oTyuPKY86vBIkC3dtmxx6N4clm6bzWE2maM3eTysPKQ8qDwQ5n5l44agbIyyIch9DusNst7lXmXdWr+sU9b6WdOVK2sculZb0pXLaot7MrhbWeUGZJXiBlhplla6rFgelBVFLA9yl8eyzqQsUzo7mqUzSWdLWsdSWzqa6YilLbVZoixeVCaLlUVltBub7bUsXOCThREW+JhvGvMd2kxSbTatIe5U5s0NyTxlbog7lBbldiU2MCeRkDlKIsFtDrOnZstsm1uVW5Sbg9zk58YMblCu97jO41qPazyuVq5SrlSuKORyZVYoLrOauEy5NMElRlysXKQ4yoXKBcr5VZznca6fZuUc5Wxl5owMmekxI4PpObkyPcpZyjTz8rQ4U7NpSrGkaShnRpjSkCVTlDN8nK5MnmTJZGWSxWlKo5k0Kg31ljRkUT8sIPUWpwaoU05xOdnlJGViaqlM9IgnqW0kpkxQxteEZXyEmupMqQlTPS4g1bGBTMYFqFJOVMZWRmSsR2WFJZURKsb4pMJijI8TCjg+QHS0T6LKaB+jyn0yKkC5j7LSdCmzKE3nuCglxbaUOBSPDEuxzcgwRSNsKaplhM1w2yfDM7F9HKscoxydSaHxWRjmKIcjPQqMhQKHYQHyTYL5Sp7HEXFyjchVhjoMMUkNUXLMUk4u2UpEyVLCBggrIeM1FMdKkOkQVAL+HAkofkP7c/ApGRbpymCDDVYOj3CYQ5oZppkfkI3poqQanVpKisUgJaUvxWldklLyf6hB//UB/1rD/gERC48YAA==) format("woff"); } @font-face { font-family: BAAAAA-OpenSymbol1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAAY0AA0AAAAACSwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgEoUQNmNtYXAAAAFcAAAAPwAAAXIeqcUWY3Z0IAAAAZwAAABQAAAAUA2OF1xmcGdtAAAB7AAAAbEAAAJlD7Qvp2dseWYAAAOgAAAAsAAAALB+dOtXaGVhZAAABFAAAAA0AAAANjA7iYxoaGVhAAAEhAAAABsAAAAkB1gAzWhtdHgAAASgAAAACAAAAAgGOAA+bG9jYQAABKgAAAAGAAAABgBYACxtYXhwAAAEsAAAAB4AAAAgARwDFG5hbWUAAATQAAABHgAAAjd2syTCcG9zdAAABfAAAAATAAAAIP9qABRwcmVwAAAGBAAAAC4AAAAusPIrFHicY2BmYGCcwMDKwMBkzGTMwIBOM8IBAzbgACJYroJI9jCmRkwFAMgXA9sAeJxjYGBgZoBgGQZGBhDIAfJALBcGFgYNIM0GpBkZmD5s///3/38GBgjN7wVVBQLEqmNgZAMRDCMaAAAVuRiQAAAAAJQAkQCJAK0ASQCiAFkALwA0ACwAMgBgAFEAIwBEAEIAIQDBAMUA0QDDAKQAhgCWAIEAmwCgALAApwBAAH8AhAGcABkD1gU/BakAWwUReJxdUbtOW0EQ3Q0PA4HE2CA52hSzmZAC74U2SCCuLsLIdmM5QtqNXORiXMAHUCBRg/ZrBmgoU6RNg5ALJD6BT4iUmTWJojQ7O7NzzpkzS8qRqndpveepcxZI4W6DZpt+J6TaRYAH0vWNRkbawSMtNjN65bp9v4/BZjTlThpAec9bykNG006gFu25fzI/g+E+/8s8B4OWZpqeWmchPYTAfDNuafA1o1l3/UFfsTpcDQaGFNNU3PXHVMr/luZcbRm2NjOad3AhIj+YBmhqrY1A0586pHo+jmIJcvlsrA0mpqw/yURwYTJd1VQtM752cJ/sLDrYpEpz4AEOsFWegofjowmF9C2JMktDhIPYKjFCxCSHQk45d7I/KVA+koQxb5LSzrhhrYFx5DUwqM3THL7MZlPbW4cwfhFH8N0vxpIOPrKhNkaE2I5YCmACkZBRVb6hxnMviwG51P4zECVgefrtXycCrTs2ES9lbZ1jjBWCnt823/llxd2qXOdFobt3VTVU6ZTmQy9n3+MRT4+F4aCx4M3nfX+jQO0NixsNmgPBkN6N3v/RWnXEVd4LH9lvNbOxFgAAAAACAEQAAAJkBVUAAwAHAC6xAQAvPLIHBA/tMrEGBdw8sgMCD+0yALEDAC88sgUED+0ysgcGJ/w8sgECD+0yMxEhESUhESFEAiD+JAGY/mgFVfqrRATNAAAAAf/6AXkCsAQtAA4AHgCwAS+wCM2wCM0BsA8vsATWsAzNsAzNsRABKwAwMQAgJyY1NDc2MzIXFhUUBwHr/uJqaWlqj4xlY2IBeWVkkY9mZWZnjZJjAAAAeJxjYGRgYEibOXPjhvW74vltvjLIczCAwNmfSxcyQMH/XwwMTBtYQ4FMDgYmkAgAlh0MRXicY2BkYGAP+1vPwMDszQABjAyogAkAP04CLAAC7ABEA0v/+gAAACwAWAAAeJxjYGRgYGBi4AdiBjCLEYjFGIAUM0iGAQADdgA1AAB4nIWPzWrCQBSFTzQR2kKhm26bujeNQrcFRUTEn1Ql+2h+HEhmQtRF1n2fvkOfpeu+Q0/I4CaLTMjwzXfvHOYCeMQ3DNTrhX/NBp54qrkDC67mLl7xrtlkj6/ZwgMSzT36gp2GecfTB740G+jjR3MH9/jV3MUEf5pN9I03zRaejU/NPfpkreyjystCJKeLLWSsiiy4CCXtWF1l6EzG1Rps8kjuyuyg0q3KArnwojBIbW86G833q6Xd6GoIPyrOVerQcRs1rKFg48g9R8kxBcc+4UInIBHTF8gQ0AiypK/clRTC4aDj2zfAhhkRKzsmZTiwL8WWe3VfYgGP1ZCcMsXDFDOMMMceKyxp2rPaO3yaAufbW4d8o9t+7x9BhGLRAAB4nGNgZgCD/+kMIgxYAAAjSgF+ALgB/4WwAY0AS7AIUFixAQGOWbFGBitYIbAQWUuwFFJYIbCAWR2wBitcWFmwFCsAAA==) format("woff"); } ? Bangladesh The graph above shows the demand and supply of socks for the country of Bangladesh. a. If trade is avoided, Bangladesh consumes _____ pairs of socks at a price of _____ per socks. b. With free trade, for a world price of $4 per pair of socks, Bangladesh is producing _____pairs of socks. c. With free trade, for a world price of $4 per pair of socks, Bangladesh is consuming _______ pairs of socks. d. With free trade, for a world price of $4 per pair of socks, Bangladesh is importing _________pairs of socks. e. If the world price is $4 per sock, and the government of Bangladesh imposes a tariF of $1, Bangladesh produces ____________ and imports __________pairs of socks. var isIE = false; var f1 = [['t3_1',1327],['t4_1',596],['t5_1',1276],['t6_1',762],['t7_1',1144],['t8_1',1130],['t9_1',1140],['ta_1',1208],['tb_1',1144],['tc_1',1211],['td_1',1282],['te_1',1242],['tf_1',1091]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); } View the Answer #t1_2{left:258px;top:75px;} #t2_2{left:258px;top:93px;} #t3_2{left:258px;top:111px;} #t4_2{left:258px;top:129px;} .s1_2{ FONT-SIZE: 43px; FONT-FAMILY: CAAAAA-DejaVuSans2; color: rgb(17,17,17); } @font-face { font-family: CAAAAA-DejaVuSans2; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAAB3EAA0AAAAAKSAAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACsAAABgErEQYmNtYXAAAAFcAAAA7AAAAp4cLxaPY3Z0IAAAAkgAAAGVAAAB/gBpHTlmcGdtAAAD4AAAAIAAAACrcTR2amdseWYAAARgAAATcwAAGYDu8SzaaGVhZAAAF9QAAAAyAAAANjaAdnBoaGVhAAAYCAAAABoAAAAkB28GK2htdHgAABgkAAAAggAAAJCjCxHnbG9jYQAAGKgAAABKAAAASnXkb4JtYXhwAAAY9AAAACAAAAAgBF0C5W5hbWUAABkUAAABHQAAAjfkc4SbcG9zdAAAGjQAAAATAAAAIP+BAFpwcmVwAAAaSAAAA3sAAAVoOwfxAHicY2BmYGCcwMDKwMBkxWTFwIBOM8IBAzbgACJYu0Akey7jY0wFANXXBDMAeJzVkTtLA0EUhb/NvvNwn+7msTEvSxEE+0AKwV8hYiU2YuNfsfWPxN9gq62dFqaWcL2TTZm0ggfmzL1wZs65M4BNvSosZawn7Uz1hsNS9yljrRrKx5xwyhnnzFlwwSVXXHPLPY+yFlHtPs0NdzwYjXzKj3wrr+RLPuRF3uVVlvJMjdp5N5oUer9BiYevnUPIgC4umZ6M6NAmICUnJvnn6bE88xkN23E9PwibrXbnIIqTNMsPi7Lb6w+q4dGoNZnORluDip6ZdmuywYxNoAn0d2Ya6ruUnl84oeZwMzvSCEGax8neKf4Yv31NV6t4nCVQLUhDURT+zj3nvQcGEVkVg0lkGIbIsBrEYBjDZBiGFyxDhogMWZAhBnlBEBkiIjJkwSALQywiIvJ4aSyIQQwigohBFsXvTQ73cu937/l+jsygg5h1ixaOpclbCGCdyKm7Qh0bRO4klj2XJdbEN7r8uYtYWwZZRI4o8OQ5/EgRbXLkJSP5wDfYkrWtYB17twSzVrHESlaRnJ55y16TK6/3bhSPGEdHXlDBtX5oTm9s3obxoom28EYVI3+MCOeo0ktGyqi5qisQefASNFhlvidyIl26u5Yd9HCk5hZwIj3mitHHjhZdDdCcC+n/gVwJ+xuoGLyeDOHXTRGje2qtDvYxzXq9QX2jRuUizv2OnwkmqJJOrCl38ukf4BRdXdF1fZa6TdiFLSD6n4CWEJG7kfb4oWwxe1rVlN1tWkla+LBSsEru+zQRNduuwEQhbrg2/RFmmpO67tFp+jqGJFi0afaTIdhmaqCsM1jjqYpLXCGrh4jINMjrz3p9dh7bKzNHsu/6SHQekwjti7NGBjj8A6zngz4AAAB4nNvOzsbKwszEyKCjILCBSdUzZYNDYITCiUhFXR00roIAu8IGhoANvJUKO/7/D4hgkWaN3MAqs4FZlWMDi6ryQ1ySD3V1vAMiFDb8dXWBmuqa4AIUC44AMkE8oDBQ3NUFLAeydAOrKhB5JmxQSM5Q6BLoUrbqEki10gUAqi8yYHiclVkLdFTluf0f5z/vOTNnMpP3YyaTZPJAMiYECCA5jYAgikEhJbHQACECtYJSihC6AnaREKVFhRCgCLkY3ikvqc7YgFhSAUFtK7hqq8u2xFKXkaZeemshObnfP5MA3tu77r0rmXOGyZyZ77G/vfd3QATV2VuEOtaOKJJQsqULN5F4E8usgQiosOtSz93IdannUk8ozvSb2X7TXyegvmU0pe9Te4tkfPXlU2IeXHkeIaGHXUYyMpEP3WsFklCLqrS41+IW9acZpiaTuKQMhozUeJaUOlxBqW7B7+rrKeqDTzYTSktL70aFPT3Xe1zXSkPHnZkYz8amv2hkyYicwK0n2f6ieK9HlNKx1yME/HgTnvDySy+9bHfigs0vvLDZ1ohw9caa1S177N6b/X8h5/s/bnpuwzpSZ49f8tSTS/eePta82+O7sPXc7xBB9QNXhLuEeqSibNRpBZMytATFQAcSxIhh+hozXk+NBMLmhgQdJdBEhyJrGVT2TMyBiC9e6ikqMqPxdnVf74OI37rmumaWmqXu0pD1RCgtlB7KCPlC/lBmWdBKs9KtDMtn+a3MirSK9IqMCl+FvyKzIrg0uC6tKb0po8nX5F+X+XywLdgbTB+6dOiioQtq0msyanw1/qXpSzOW+pb616SvyVjjW+NPnA1lyhS9nvjiopH34FFmoMTAgcyckhEji/28YpmiVDIeFxfFk1OfdKxdsi0SDpd1ru+40H8Tk32tNa/OWHCq+t97SXFd/bxlH57Ie6B/7cG6uW/uPnna3fDc8OEHg8E+hDB6HXpbC7WKQyOtJKogamCxyTDDeqeKiYym8fpM8vBuXgewFI7rvt7VY7oTSkMnarzveQlvZcCMRuOFJ8XeaERCbXj16paOSKT8leVvvkXa+79Fdu7aeaq9v0moObyg9q/QoyftSqEavldDueh+QJSeprgb4+IjThrJCYSDnUrEeTI5LScJyfp9otvtm5jn6usCDBUVRZvTw+Nw2Zevme7S0tCrNflr8tvyKUQTCyVatAQX8WfmBEvScbSCvHrEdLkhvoSSYrp7T8vmPXs2t+wJ2/aNuR3Tp+98+GcnSo+vfrev793Vx0vD5J5zH3107uxHH31u/8n+LC39lWH5J994dP48PAZTLOAx8+Yf5PV7Ew4rRQ9MSeZrqJVgGU0SoFoc8SHL4WIWq2A1bCnrZSKeHVdsBt4Mh0XPP3sQrwHgtBqudaFUNNpKSo4gwxNh8gYjjFtpgoBkcp/p1iamwecNJh5Lu+saZJy+Jr0tnWdsFg9CA5JDkByOJh9DCN0dDo85tvrCABq4sPpY/9l9L764f/+LL+6jr5I5/+zZXzsXT8Ay/EyYa3svXL16AR6DcTVAbzwoBS21spAXK43yeuY9gFlExz9PjLjD+obUFC+RvTKaStzOianRELugGUAo3dd7ul0wN67rvDshK68sbWlaW9qv0nrTWBkqw2WkzFuWwoZJhXKhMkxdgpbgJWSJd0mKMvtJyMfrjzZslBdy8qFoTkgajjnehYa+4/o7ry0+O2/+r75jX7fP4ry+P2EpTPas3x4xyJzqU2dHjDicPwyPxiqOw/faH3e1nji8k/dpycAVehZyCqKr1jiHTgztkYx0WSGS+khGRnq5qqVnCF7UiJsFT6O3OTFiCpFsIIncdFXLSJHQwymyIcmezIm5HIaXero57koHs3XZf7/m+vs1PhVTH5kluYwvgPWk6LEq8zgKAuFZ301VU7VUfTgkPEwbpo9VxqpjtbG65kM+nEVy1VwtP67QU+jNj89Nz83I8+X5s4KNaqPWqDc63AgyIERURY3q1EEN6qQumkSTaQpNFdKUYGFeWd638xry1uQ9n9eW15uXOBtBKb3RosEsZGDOqmLg1jAAOArxcMyppCiePjdtf3Vz87zNZV17/vHb6jOP170195kNCw5Zh7b+4d26E0LZ4dzcGTOsKX4jf1vzjlcDgVMlJVXTp1ZkO7NantnZkY7QLR4BLMehEV/nkdZ/zSM9QzxyvMaL/yuLmP8Li4ie/p2cRhAeuAHf+xlokwQsYoikBa0VsEVTkcVk16Xuvm74LpidEJ56VJ0x6yRImAXBykgeOD3aHDW6yopDSgZyYRfJkFyKpSxVdinKbOr3+iEOvyj8tf/ahf5r7PLBG5dZwWCe9H7AkYlClkfUJGRqtMkIK52SKsLHTnJzfPBRBVx0XbrIB+BERdyuOM6UsX7cpskEen/GlGE79kUiY15fFzc8lZ5wmxdO9R8HkqybzxjiHPE68GQ7fB/niPFWyhBHhI0N+CTtTAN+uC/KFJM4SxRFi+vq7h6iCUuJ8cQf0gU8O/vWN8NUEUDDnWSJl0EUx+ovooGBi/XHyGhgin38sb//sKgerJ1rd9pfwU/nXPz5EFHE4gOuaIe+azEOoxHdqUQSvRuc4ZTWJOR235eoi3LyHdENcthbX+OwOwO5I8CgFyKmnw7F0v/j2xGOiURI4WAk5OE74qvdD9HEOGx5VF8SABlxYsSNInrYvSFRcTunU7d3YmKUsgYHGCoVKEuqR/Vig9QgNygNaoNWrzc4GowGZ4Orwax3tyX1Jpl3KDKMUJCHiQKZ/EiWbe441LKpo2NTL3bb13r/Zv8Vm/STq+fPX/3LubOf7bDP2T32F0BYpcBLHjw6OjP3AHYbhBokoptWkJoCE4iJCeMnSkQkYhMhsZxQ9AYTGSWYCUhyXYoiOQIfYI2umnrUM2PqUe+MR/kLAOmqroSo2SoaZCL2heSSBx/si6pMbP14MllM6kkDaSRryAukncj8ixSqAPt5cTJNFnJQDs6jeYJPLkEleAwdI4TkSWgSnkKnCJPYZNGSK1ElrqJVQoVch+rwIrpIeIwtFGvk5eh7uJ7WC8vZKnEdWoebabPQzBrFLWgLbiXb6VZhK2sV97N94lH5tPyJPCCPB6KKK1ZwMQ7ccwbPwXPO2N+6IdT0zaAdN9uiNaqEEpRAjXT8uTWFzRSZoirCTFWhM1VNJTMx0TRVNCVZYlA/WZZ46XR4N5ROL1cZoSKUT5N1TVVkkQlQRZhZR6yKU4+aMx6detTND3H8oMUKySsLhKHDGxz8Zdft+l6M1nccYDnhX5b41jn2lFd8gJF4Es8y1RJ1CpnCJqmW+ih5lM1UK9QnyBOsTl0J3VjJGlgT2Ua2ss1qJ+lk75Kz9D2WxohCRUFjqqwpcNK9JInGC8ksRU5RPJpXz0bZOECC1C9ks0wxU8qWg0qW6tcCeikdKYyUS/WQMYlMppMESyhnlmhJljxBmaBO0CzDMngfK0mFMJ09LD4sVciPKDPUmdp8VIsXkMV0gbCYLRYXS08oc7XH9CXGcrQcryQ/oE8LP4D+NoirpAbpaXml0qDUq9/XfqA3kfVso9GKWvFmsonuEH7CtopbpW2yVbhF32XsRXtxO2mnh4RD7IB4QDokt+tHjJ+RY/Sk8HMWVt4wusgZelF4m62MYiIF818c0HCgMvznTz/886dh+/cf/u3LDwEdW+hi/rjZRrf0LQaMjAIi+pLtBO0BBjKY7KQHkIk75SZVA4UHdnS5Da4947rgtyi2jlwfBzQNVj90/EhMfzjle+LHYi/32OCoik28Atfb66YuO3ny8u6mJrbT/sXG/rbmadt3/YbUbMTjb+melAY8k4mqrRzRrSQ6kZgmefWmNB8Np3QmuUAhnLIsVpiysyI1EagwEF2N+vp6om6pcBxY6mgsXAytuFBWRdbSrOez2uDnjaxPsgayFIguKhfeOzXyv1nuvImnnzlyKvLU8o17I0+t+NHeSKTs6MpVh2jz6u///U9cOv9tB5dOsnP3T954OWrEH5u3Osbhh4ErZ0V3AA8aa6XeVu8NKu70hHXQbo82DVR8kpeTZmlM37qLbq0CS7yn+SoQB8odI8dbnjQHH+Yi/tNw+N5jy988h9/Dr5O9/XN37TrVTupvtnXUze+l+6NcCDrHudCJn7PulWSimMipmpqKkNMwncjpMHUH4ifDAYOvmzD25Q5NcSGNNdGThtbpMhy6qsC0y07BqbmGJlyOzq42RJb8eZQnu8yEqHsDTRrc7/6naWZfJBTxOe4VEZNFhTri1QSHyxFwlDimqA+p0xzVSrW6WG1yrHFscrhVBEHApGqG5kzAXuISXCxB9WgePdlIdgZRFrg9n+BjeXKukq1maVl60JFv5Dt95ihg2xISEkJstDpSG6mPdpQapc6Q+Q1kYYtY1BKswQkuVyaq9zmmGFOcljkDTcfTyUxaIVSwSnGmVCl/U/kmTPFMvcqoclaYdbiOLFQXGYucNWa9/LTxtLMZPaus09bpzY5mo9m5TWnRWvTtxnZnu9auHzIOOY+a75mfmAPmAphDZuACXAIdLcOY0zTZNG3z6k2PPzCj2G+PjRH2wnOrtk9unCFM69tMH4/NRCGA6quoF6yyUpkL6/IBETehVkPsVEmchCSFyQ6n9gCM5KCYDfbHuNWf6Kh2uaOz2l3UBwpdxBc9/KrlrfC2eelsPqdiGo4ZNZhW7mXJV0fnP4gL7V9Hjh49fFL0bKtYOH9jXyH99cZpPz8EcYEnoFcB50mozEoBr79eMBod61Xu9RPA6ydLbgea7JmY7OrrLhpyBvZ1bu1DluZMcaWsSXk+pS2F8SVlyFsPbSpRF+AHN3112ksVr7z11isVL017cM/sfvsDfBcWZ+4WSjoKCq68886VgoKDWVkw0AZ24zGBW955B9RLRZ1WnmyC2EumCIofcwTgB8plEDLaiVoVkWFBlPmWqXEaudRlxvSoe0iOhEHg8ocA+nPcpfP149sCUeV4EiR5rECuJHXkMXkZWcGeIc3sx/ImsoW1yi8Tt8IUkWhUlXJpUMhlBWKBZOkLaY3eTNeBkv9I3Chtp63SQbqPvSr9UvpA+gftpf8QeoXk2U9y0jY5SALg5V+PkOzP+w+T7/T2n42Inr5F+Er/9f4OEuj/GPL9PSR9GNmwM5uvoR8SnIQSb+3Mo4q9gd+//75tw/vOw/s2gbenaPhr6AjBqUgQOGRct/xP7BpsOUKDi/ZGtouJ0T37/Ntvs8s3Cji/3d7RJVQAW8Ip4RjqJAzLApokgyzE+KwPFnaN7wAVSg3sASy2rgO/8pU9HBZqbraJns94v3YOuPEZiJ+hJEunO9EPRSrwJERI4tJFAE5fNA8aiOt9v33tw3aHfRrD2jHQY6cJHrsD4nD+DB3AiAiurq670SXIwOsvETw3f2t3bNwYm6EJoCt7IXcd14PvSY75nmTwPcnc9yT/n3zPkX/he/7fBuY4MjiAvhSJyAiwG1Ldai7LUn3qeDKejVBD6gPkQVYOrqYKnOV32GNqjcr95WpwNGvULaSFpUlIITJFgsigZCKWBFiUJAUpgqrqyEimXsErJ+kuwyf4mU/0ST45AC4mW/MZPmMcGUNLhGIWkkcqpVoZ9zPgRe8nljARWl4ulkvlsiVb4Gke1LmnmUUq5Sq9wgCE07nCPFYj1kg1cq1Sq9ZqK9D3cT15mq4QvsdWiiulFfJS+Wm9QW8wGkkTXQ8IX6c8q4GHEXYZR4xHh7xp1J4CridcxGNw6RV+eMdutu1f2r+w2eWbbuEaf9woYK4bvdA7ig7a7wvfBbz5US5w4UlrZiaBpgVxTi7vWhpOTyWFeYUpJC+vsDzOdGWqKXlCgqjk+xlJaIwXG5kZSH42vtmF8p9lzeQuOV5Nl/KS3RQpmS6FYilHdjAxxCdB4ZPAOGHG7KqL21VnVPIYnw9YsxPG9SWMu97NJ6UbNtLunqIufnMGzAfoHqi36b6DOWJ3LoZOnD9wgA7H/LZBghm9YTCqpNgL/wD+C5rRuwoSNQ04xyfA0g5LETlRixf9ZnHdr5d8fP53F2tnH37kkSPfuvLBlQ9qv7fqyT82rK2338d3kbvuOmF9A+NzWR1bXu40Pv+LkJFyJH+4YM8MnNhx4IyTIrzdsXhWZc1l+yHziepZC2M+pRZ4sh1mgiAHWmulYQd1IEod5YhqUhvDdK2CdRWlirKgG66PuJ2PGngohs5LdClm+XghLsEA3Mr7POD9PFf4fA3lo8moCi1CK9CzSIrHBbALFdCReBp+SH/IUYnr8HK8iq7DDsCGgv20mNMDv1NQQkWbYLvEvnz5fP8clt13hb7TV7zfbsM1Z4Y0kR0ETGShyVZcTlQCdX+iI102db/L80A2d6dFXPRc47jyAS1YpuIwD7hJchNKbBUz3J2as3Dcn4uK7HHXikAOi0Jfk8DbMhi1sBL/A9dEdnBIE20pKouHj84P5uB/fk0fhzRyW27uwvkxrfwj1Loaaq0iy/KW0zaBtLG1EmpT5AwxlaIMrHGH5eT4w1Em7ooROPgp4DMoLBT0hJM6BTJ7lN9kJdnF3GHb+H57G17wNr6/r/2gsGxyePKNywejvd0Eg3OU9cL0ZKEFVkFWuiIKalqcgDyNcetdLQkvgFCkJTsUJqjp2JGaLKRCw1FOclw277TO44iLGjv+nw78nj0HdsxhX/sPLuLvwEsJ3EGsVFapq3x0dja0Li4ANSrDUeTevqEOqHaCPkuAa9x04cIv3xhdXV1a/MPHH3pl7pw3Hwt/Mrl6VmFQFkXbxi9sX/BMZVXJnLurnph0b2fp6F/seqC5srKwJMk7bgRC/wmO/evdAHicY2BkYGBgCqnauGH9rnh+m68M8hwMIHB+940TDFDw/80/WfZlbCJAJkSSAQCA3wxhAAB4nGNgZGBgz/0nCyRfMkAAIwMqUAEARxMCpgAAeJxjOcuQxlrLcJLlOUM1qxDDLlYRhkImS4aDIJrlDRBrM+SDxFke///F1M3AwOwFVgPGLE+B8nsYbNm6GcKYlRnM2U8DxYUY1oHEmC4y6LOkAeUXMewC6rvNFMNwEmQukD2PheH/G/aXDC6s4gyrgDiFtZlBH0g/ZLFnmAwApXglgwAAAAAAIgB6ARABTAGwAc4CGgKEAzQDcAOoA6gD4AQwBHwEzgVgBnIGsAcSB1QIOgiGCNIJSgleCYIJqgnGCdwKugtmC8QMHAxUDMAAAAABAAAAJAAwAAMAAAAAAAIAEACZAAgAAAQVAhYACAAEeJyFj8tOwkAYhU+hJVETEzdureyphcStCUIIIUAqkO4bemEInSG9LFj7Pr6Dz+Lad/DUjm666Eym8833n/6ZAXCLDxioxwNXzQbueKq5Awuu5i4e8azZZMbXbOEGieYefcakYV7x9IJ3zQb6+NTcwTW+NHfxim/NJvrGk2YL98ab5h59slb2Xp0vmUgOhS1krLI0KISSdqxKGTqTcTUG0+gY+OU2kPlGpYFceFEYnGxvOhvNd6ul3Ug1hB9ledV16LiNGtZQsLHn94wLnyn47AMKOgGJmD5DioBGkCV95UpSCAcTjP/nAFNEODLrs77lLpFjw3T6ywt4rIfkE7t4TM8wwhw7rLCkae/VnvDpMu5/dx3yjm77fz8D+WE5AAAAeJxjYGYAg/91DFEMWAAAKxkB2wB4nNWS+VOVZRTHhQ+nhLvw3ssFJZCiehUhQG8JhqCXa0VAWoam1tC0vG3WtO92jTRQcQFTX0vUTNsU2xOw2744U9rmNu2LYnvZvrzNHHr+gn5tOr99z/mcec73O09fakts4G/Fi/CXzZ9R/nD5Pchvyq/KLzY/B/nJ5UebQ+21ckj5weV7l+88vvX4Rvm6iq/ifKl8EeVgf5McdOk3YH8TB/aXywGP/eV8rnymfBrlkwgfu3ykfBjmgwTvJ3lP2WfwfQn27qmTvQn21LF7V57sVnbl8a7yjvK28pbypsvOHQWyU9lRwBtRXle2t4Zkez6v5fCq8orysvKS8qLygvK88pzyrJJUngmxrc2WbUpfb1L6lN6eZulN0tuS1rPVlp7m2AA9sbStNk8rT7k8qTyhPK48pjzq8EiQLd22bHHo3hyWbpvNYTaZozd5PKw8pDyoPBDmfmXjhqBsjLIhyH0O6w2y3uVeZd1av6xT1vpZ05Uraxy6VlvSlctqi3syuFtZ5QZkleIGWGmWVrqsWB6UFUUsD3KXx7LOpCxTOjuapTNJZ0tax1JbOprpiKUttVmiLF5UJouVRWW0G5vttSxc4JOFERb4mG8a8x3aTFJtNq0h7lTmzQ3JPGVuiDuUFuV2JTYwJ5GQOUoiwW0Os6dmy2ybW5VblJuD3OTnxgxuUK73uM7jWo9rPK5WrlKuVK4o5HJlVigus5q4TLk0wSVGXKxcpDjKhcoFyvlVnOdxrp9m5RzlbGXmjAyZ6TEjg+k5uTI9ylnKNPPytDhTs2lKsaRpKGdGmNKQJVOUM3ycrkyeZMlkZZLFaUqjmTQqDfWWNGRRPywg9RanBqhTTnE52eUkZWJqqUz0iCepbSSmTFDG14RlfISa6kypCVM9LiDVsYFMxgWoUk5UxlZGZKxHZYUllREqxvikwmKMjxMKOD5AdLRPospoH6PKfTIqQLmPstJ0KbMoTee4KCXFtpQ4FI8MS7HNyDBFI2wpqmWEzXDbJ8MzsX0cqxyjHJ1JofFZGOYohyM9CoyFAodhAfJNgvlKnscRcXKNyFWGOgwxSQ1RcsxSTi7ZSkTJUsIGCCsh4zUUx0qQ6RBUAv4cCSh+Q/tz8CkZFunKYIMNVg6PcJhDmhmmmR+QjemipBqdWkqKxSAlpS/FaV2SUvJ/qEH/9QH/WsP+ARELjxgA) format("woff"); } f. If the world price is $4 per pair of socks, and the government of Bangladesh imposes a tariF of $1, how much tariF revenue will the Bangladesh government collect? _____ . var isIE = false; var f2 = [['t1_2',1107],['t2_2',1198],['t3_2',879],['t4_2',601]]; function load2(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f2);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
Bangladesh The graph above shows the demand and supply of socks for the country of Bangladesh. If trade is avoided, Bangladesh consumes _____ pairs...
Q: The graph above shows the demand and supply of socks for the country of Bangladesh. a. If trade...