Studies have shown that the frequency with which shoppers browse Internet retailers is related to the frequency with which they actually purchase
Studies have shown that the frequency with which shoppers browse Internet retailers is related to the frequency
Studies have shown that the frequency with which shoppers browse Internet retailers is
the frequency with which shoppers browse Internet retailers is related to the frequency with which they actually purchase
Studies have shown that the frequency with which shoppers browse Internet
retailers is related to the frequency with which they actually purchase
Studies have shown that the frequency with which
Studies have shown that
Studies have shown that the frequency with which shoppers browse Internet retailers is related to the frequency with which they actually purchase

Category:
Words:
Amount: $20
Writer: 0

Paper instructions

Studies have shown that the frequency with which shoppers browse Internet retailers is related to the frequency with which they actually purchase products and/or services online. These data show the age of respondents and their answer to the question "How many minutes do you browse online retailers per week?" ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:75px;} #t2_1{left:76px;top:90px;} #t3_1{left:442px;top:90px;} #t4_1{left:76px;top:105px;} #t5_1{left:76px;top:120px;} #t6_1{left:76px;top:403px;} #t7_1{left:76px;top:418px;} #t8_1{left:76px;top:433px;} #t9_1{left:76px;top:456px;} #ta_1{left:76px;top:480px;} #tb_1{left:76px;top:495px;} #tc_1{left:76px;top:518px;} #td_1{left:76px;top:541px;} #te_1{left:76px;top:556px;} #tf_1{left:76px;top:580px;} #tg_1{left:76px;top:603px;} #th_1{left:76px;top:618px;} .s1_1{ FONT-SIZE: 46px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACbYAA0AAAAAPowAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABTgAAAz6ZnRfGY3Z0IAAAAqgAAAAuAAAAOCX+AcJmcGdtAAAC2AAABRIAAAp127YujGdseWYAAAfsAAAbMQAAKnJNun6TaGVhZAAAIyAAAAA0AAAANq94QG1oaGVhAAAjVAAAABoAAAAkBgIEwGhtdHgAACNwAAABBAAAASQTUxkRbG9jYQAAJHQAAACUAAAAlJTMn/ptYXhwAAAlCAAAACAAAAAgAgQLeW5hbWUAACUoAAABFgAAAhOXL44TcG9zdAAAJkAAAAATAAAAIP+cAMJwcmVwAAAmVAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nO2QyU4CURBFT0NjwtTMczc0giBNmFGaIRAwhJiYaEz8AJfqxrV/ZeJX6coPMG3RuMDEFWvvS1Vevdx691YBXnaho0jGY0slN8VCVTR5qGKiyjFp0OWMERMWLLnkihvueOCFN9NwvhxH2CantBi4rLmwLoR1zS33PPFq6luW88EOoW1yPiXe2Yerz7EoW25t/cSQc2by3yPP7rstjlbiuyA6G/G0pkdNmF3aNJlSISc9c/GsYIirMFlSMomfOEVR93FCXlRiRMiQJEEAj6hrROmQZkzJnWRGmfr/Nn5tA+VINBWPV/X5A8FQWItEY/FEMpXOZHP5gm4US+VKNVirN6xmq203ev3BSi8s7fFmsZ5fLFeT9YZejT5Wt92cVnLIMAzFnGK09mYPZ1OqP14Mibd8NRbJJBMBj1eLdtJjDkJpMJod1vknvgEJ2FDPAAB4nGNgQANbGTpBmFWJgYG1nfkSA8O/bezz/t5iNfz/Cch/+P/Tv4UgPgAbphHYAAB4nK1VaXfTRhSVvCSOk7S0WSioy5iJA7VGJmzBgElTKbYL6eJAaCXoImfrynd+g37NU2jP6Ud+Wu8dO2YzbU9Pc3L87jxdzXvvzpsncYyo9CgQ16gDJc/6Ulp9KKXOo7ima14WK+n345psJp6SFlErSZTMdgYHcoHL2Y6SNYI1Mp71Y3WksmygpNqPU3gUn1WJ1onWUy9NksQTx08SLU4/PkySQApGYZ9SfYAUylE/lrIOZUqHXq2WiJsGUjQa+aiDvLwXKj45nnULjRpgpDKVYbt8rVzPduK07w3uJbFO8GzzfowHHrMfhQqkZGQ68o+dghOlYSBlLHWolTg6HEhh70jcfQSUUiOQKaOYVaGz/2fJ2VPcQTbThJR0y2Y1PWQ4vs4rpXqqOpkeUEVbtONRGFEewp/El2JdD7aGL1dMXi53xB1sBTJj4FJKZqK7JALoMJEqV/ewqmIVSNUoOWUzVEhoH7FkNkpVluI8UEMgs2Z7N86n3a1kReYP9ZNA5sz2Trx9f+j0avAvWP+8yZ256EGcz81FyCCUqp+IE0mhHuYz/KniR9xlCFOs9+PchVo4njCD1gg706hpvHaCveFzvlKoW0+CSnrIvwfvy8q9Qc/ccRY0dInE2Th2XdcezlvIstzZjR2Z06FKEfGP+XnXmXXCMEvz+bIvj33vHJR5G8S3/EBOmdylfcfkBdp3TV6kXTB5iXYRktMumXyKdtnk07SnTV6hfc/kM7RnjFT8fxn7LGKfwTseYtO+j9i0HyA27YeITfsRYtMqxKatITbtOcSm1YhNu2JU2/ZH3SDsfKoiSJ1GVlk05kqjFsiqkbovdfToeXRgT71BVD1oaZU9iP+Wga4I5MJYaXdZzjfEXVqzxX38ohAvP2oYdc3m6RtHihM2x7WYGJR+Z/l3h39bG7qVN9wlVGJQNxKdnCd6c9AKJDDN0+1Amv9ERR/tg34RR+Es11VT9Xi/IeGdLOvpHi5pvOdxsmCONF13aRHx1wyyQo/j31JkquMfZk2tVDvDXpeeP1bN4R5S4pDq+EpSXtnNnfhpQRWV97SwWjybhJwqFUwnbdm6iwsUvXobUg6P4bwsROmBlmI0OMDjQjTwgFMOjFffGSAlDGndxdlpROiiLhgbBftNCKLtiMKTlNqX0Ujl13bFjqyobpPALyaYp2vJ81g48svUQMFTXh1poNuQ5op1SwX3RKmu7jEYT+uqlYwFjBR1duOmauOzwoxHTsVcxpLXsbozbPXOvh6e0qS2HR2LZu9eG4WPTs4l5Qft1fpOznHdaNWkZF0M1nbSzFfdRdy662N3/0V362X2RM4NI2v+xE1vGrnkZwjMTkG2r3NwJk1ZBfXWuL1OpGVnafR5EzdkuF3b8CsT/oc+7P1frcf0OVTaGnPjhcOuJaMcb1OMk/o3WH9NjwQY1TEu+ROUvDS8mccOL+FCUwwu4uYb/J9iRrmLCxIAh0YuwkRUrQNdVRefohOdtgx7USLAjjl2nDZAF8Al6Jlj13o+A7CeO+TcBrhLDsE2OQSfk0PwBTk3AL4kh+Arcgj65BDskHML4B45BPfJIdglh+ABORsAX5ND8A05BDE5BAk5NwEekkPwiByCb8kh+M7I5bHM33Mh60A/WHQdKLX9hEULi4GRK2P2HheWvW8R2QcWkXpo5OqYesSFpf5oEak/WUTqz0aujam/cGGpv1pE6m8WkfrY+FI5lOJK/wm/H8Ff4wH4MwAAeJytWml0HNWVfq+WXtRrdfW+SdWlXqReLKnV3dZe6tbStmSDLMmWLFu2JdnIuxAYvGKDsbFZvMTGmC2YBBIIJggY7AQmgcBJzplhsgwn5+SYZQYIP2aYyZmQzISZ4G7PfdXdsrxNMifxAXVt79W999373e/eV4hBYYToC+wtyI8aUAtqR4deQ5hCON0zU3HzkFSPaApTNJ5EmKEwsw4hRNGIGkEMYlUMO4LUakUfUij0GaRSKfuQUqlTdrikuquHKZAaKdTD1wy/PGhY0rVLHGcOBcRqd2WZPcy30vE6L2Ux6xkDFoOBViZRHxB9ekr0Bfn6Vqp4E05jFBY4IQX/f2Gfn+6NtExkg55w/TyB4e7UMc5wIlremQwmg06NQ7vK6AnarEE3x7mDVlvQY8y/SH/34pI6uvPiG8wii99j9LUOJxO9DdX+SuvErUJtVSCaCtY0cBbOknNYQx6O84RgoDwBM/7HRxNMDrTCKHXpd/RathY1oxapsRlj1oMZmkrDLRojehLRDKbBEHCjH7GsOYMYhupHFGWhOhrnB/2+CpdDFBRcGCuIQkRPi9mrKCgYCKZaMdE3XtdKJepjioSsv9VGewxOQ1VTf2OqP+WO92/YsqE/Pn/jExM73u1OKC16fl7XeGfj8jaheKt+/Pjo+pckpt9d7i8vTy2oTmXjgVB80VTfskempJU3LdXoqmqrfK3LEk29cTFQe/MdQ53717Z0ZUA/36UvqPtZA/KhBVKXGmO6HLOKCoxYOo0UmMUKdhK00WYYDPf6EE0bMqAnGlBihCyoAyOPy27lTZzRoFMwyId9KkOY9QUSHKjXglN8K27CnGAROLOVaAnalWM9xk/funPKYHmsirIYl2Nd/vepiNPv5FVqDVsf3Wm4Zwc1YOa7zDhqMOVf3pf7XnOz3qRXqQeqY2RN9lz6gn6Ofg/ZUe85gxK8mri1D9yaZ8EtMUgI/thPY4rSUeC1ttJVOCe36H5Qw0KDa2rhzI7sfoEXFXwYyzImU1ycCD8PxCRLluBwdHxtz92pmQ0mO2Vse3zdzTuWVNPv5Y5v2dHdSv3jxRjHT3YNJtYc7qe2IvJmtBB85hn2CLKhAJqStGbMUm4XQzMsBXJWgpweEEBP7Ci7ii2jxAyD+rGCQkiHQGLhqvsKMLZOfgr3g7YWDLJbHXaMKrz2gCNgtZiMKgWyYRsYX5gjetGdQCE/0SsGV8H1vBTdxNspU+vXJ/vvW13fsOnxseG7amfyi/p3JeZtyRw4JrQu5/htPSva73pj56Y3Di1uSlGeP07vXdSJL7TF3/6bVYeWVSF06RLaAouxlr0bfEcBhz6kRARjVNT/oIAkguCyofWy68hrArqB8LxGjRnMmFhXGNby8j/lKyxmO1d31MLVEzBTBlaYRnbJQs0ZT5YP0RxthNUSOZyZod+7GIMHYcwm5hgeZw8hHpkkA4ldYio96ghVUhB+RURJFBEGj5vFqMMREcxmIeJwREUzq3FEyVnU4Yz6zGZflKxkD6zky/QngKIxlJU6bQT80gg8C9PUJKAfphV4RIUhIPpJQNiIjzH9gAEWpiMYwKi6KhALxjwus8mgUyuRH/vVhjCWEU4hCl76ckjQJelsPoVSqI/Bsg+d2tJqsuemqVjfVKc0molxGqOiThhetzmx7uyerrY7X9iy66iJsviklfQnjVPfWF/lWnF4edRT6VGrpGCD39Rx4J29617ev3DfsT1N490hsFEXRPuHoM8cNKOYG6KZ7a+DZtS3tXaDWJuJBVsj9lB6cGgwHYoN7x9c81SqSmXlTJXxbDKWiVir0oPDg+mqyMDum0dO1tM1VqvDag3EPYG6So831Njf1HHbQE06kdbpXYLLGW6sCCX87vJgy1Bbwy2LY81J0O8ouMd5iDwLikrVZpqSlwshiCWalv3BlgEwkHEBEfyyiBaRg9CPQ4gUhLeAW5F8pFByR2daHh6DYK+aGVvbsy/JHsm9k15M4jx3nNq6eWe2LVdLfGQA0GgZ/WtUBZn2sKSpgPwwj6EUSqoISiEECYNmwF8opFRQyhGQpWheNVYoIO5VpbiP3PhRlQwBZMBlCHCGqzGqraluCDdU+go4XKZCVbiqrAQDs16Vmk2ycLmkqb+O3NDTMiSonW7WGlhw84pUw3hPuO3IZ99as7J1sDVqMzlVFX1vTC/ZtzSa74gsTDd5tj1zS8xR3Wh0jIipAF/evibduHEgwfRM31YRqDDp5y9elBg71J87uskk1Hr/nvXUtIcCKZGD9eFhfe6HcDUhp2QrwwS550Z3RDDSprAgYuI2vBfbWosZhPI+lT953Oxm/1FnUil5/S8VLu4B+j2rPndETPuEjEhNGyzFeP0N+DePgigiVYH5UD8jByYL2aBkOYsZo3KPOWgJatSIx7yiFJOXMYIv+HDJxSnKs/Hs9vb27Wc3bnxxR3v7jhc3dm/oFkX4k91IfjfSn3Tvf/2221/f3w2/t98Gvxcfqx09tGzZodG6usJvLZIZhQUh9pv0L1EUVUiegE0FMhIrgA8YACppWkd3VAvh5grWHOavtkPxNFk4AzgP0jEc1GMlrQhjywNmN/NSmZ5VmTVvs05Tr9nB/lBjUmnMr7JO/t78Tx90lP1UpWHZMtUvNO4DYD5D7pivvaKiXaRuN/C8IfegL13RnqGmjOaLMYE6YYvabDFbbosgy/0giS2wLcm6NoUcWsWsK5sZY6JAKbog6yJyfm3czWZd0eIXCqFHAPCa6HtwPeQoQ9sTcrqdgQx8T5J+bzbVFkKwuy1XI8tmh0AcZ3cjL0pJ9ZyRIk7FEmArLrqeIBnqo2UZgdawOpYAgBd5OYvfb1WaQYxgDLfgeAm0lCSF6ikPJtzlO+MW59eiA9t7yptcLBXxV2dqnFiZv0S36SirObtyYP/wvDL1kI211g+2Du27+BaRaT/I9A3ABTt6sGcmCnbSaGGRwXJgiLSLnNGls+GeGS8xJKEss5aEbK9jOlyFsQVr0iUnts3elrxAvQE1mMmr7V14YHjW3kLl1fYGLQHHZVxQcvvXum2UNnrvyvKkVU879PHyaGeq2gRe4jy2ZkpnuMehcSV6a3OnZIaTP0d/G3SzQma8pyC8lgea43LSMs1xyad06bSon0dmNAqA5SLnKQQkCX5Opj0KXOSXc3jRFc8MS7wdTFHusfntfni7JSRyKpPMBa6kPKlkHF9Jeb490/LExMCh1fWNm54YW7U/rlMG86/1705Eb80cPC60jdDv/fEzfCE7WCI9mZaeyosvEs7TkihyHow6AV8aIQYiqEFKRsDHnMAI5uZPQgzm5s/LdAAKoBCRJVwkZyVkKVCAuQxArgCwyqA3VNR01qXXZkR/x+rmxoV1gsmsjVcsXr6mbumprW2NW7+5YeJUI+3TaOwee3zVocGhw6O13kovV0j+d7+xffP3D/ZkmkFuDazXccBdK3JJdj1LXQG8YNeIzwfAC5KFMX8N+OJHVS7n/ufy95+22RWfqQyswqD6SOHmHsx/bLbie+nTAMNPWKot1rCFGgMYBv94CN73OfgHYcCbJa3bpaBZxoopmQHLrlCkvLKrlxbckiEOwNEyAyY3Ztffdu0z4AoOCPsCA4YX2UJ+AVyBvwJOisSEwwRRvHAtSUD9IQItXOuZSdkdNj9B6C+ml+ypj23tkH0hf451c/w0YcCvgzMcXtyczC9hzvR25UNFAhwqMP1j4A+fA9+wIhFtkNQuJw/+zuBZmk+ox9VKyP5voYpKXnGfqKa7rCo1x99Fu3jZ3+fQlaKGEMhzdQwcm2l+bGLw0Op446bHVq++u66MCeKWvl3x2Jb0fcf2AZX5fnd/evfLU3e+/UDvgvZlfnppUbm3XnkO/OXb4NErWR9wbcKlMdYWEzRAKwf5mYvjlefOwX1U4upgg1murr8RV2eP/HEaHkT40n9eep6ugENVgatjtJGANO7w+WB+G3FDnGzCT+mTnoXUQUdmodknsM9KSK46Dl76Ld6D/gUsrkAHSeTBLM6vVhclRf0ysesI+Sl3uJQb6J+xpDqBfEuBw9F9JM2CShjrMJFSiZQcx7EQAID1Iick6J/l7z6f38f6Tn91B3P/aSRrIuXP0GfoT1EK9aBh9IhkVGGlqoajKGVbNcXSNCy6ExY9UoaVAMlKCsgbYsHvR5AcZyoV6lcXagSFQgYFB4HveSChCmHV5LXDrjtiWHIv6gUt+3qHFw1nu1qbRcFuM+oZGqVwSkOIjNUmWMwGbC24BpCDyxSd4EsyFcOlv60Uro8xhUdkIMKy8xQhE/+sZUMYo9BkeWL07kVS0uNODk1tmxpKNt/6zVtueWxd3WBPVU1zc+dNidF78Ba/NDC6Jlrb6m0by6TXdVXmP14zPr5m1bijdgH9qdvZLioMUm/29iVRAx+2iD4jozbXDna03bEiVZ0djWcnPHw6VT1aXnVwOHt7f+SrfxUjDo2CUToXxIX5VXZntI1q2rRseP364XB3vYf4QcWlLxgV1HtQfVaQ6rOi4AvUs7BaJyS9F2MlB+hswmDWIlOZd7l0U2jJkqj7kVqth1wJD/fBCijlLgEaIJxRZuTxP2cEYeYE6QcKSA9BC+5bH6nGUO8FRb8ociaNECa+CDLTn7IGVIl2SXoPTGEECbk5EvqveF/hLarryFV14+eukYYUw5WosiAJp7bK4XhVQ0a8umVDfzqTn5cIO0SHSe7KRLa3b92+yWh5JESbueX0WxclWprbl7myZUPW5zx9kvqU/bEcp3AMK+TjyQr58HIQSPWanVdgqqoQo8/QJ/EheJZDildZhENhPgYQnrJZFUo9ZSU/n1d5bAtbkwZG5agsM3t1Gp4+2Xn64cNJn9qt9g6t3RS3CMoST2WmIN41JN4RA1cYPMzKEU8VzMeRf0ZIxQKxA6AZ/I0zU+dz958/T91xnhrInWV9ufPUghK+sZ9Azg+jpeer9QpgNCXia1XISazI3VVKAAHC3l2SExV4JgF2goi2yzcLyxFGYag8+UBQgOUoMTKaJF75b4kG6+cS4hOTZhtlcLd03Rxdu9dl6RxYXXfmpZnJNZHFTeLMmlFpKkb48YSQqrJuWZnsrbO99QphydPbPE1LG8jRtulMUy4k67SP1GGAv15UI0X1mFQgBOMoRI8QdqzPyJjF4FKlTIiyHxIsEGXMkR4ZlokBFB7AE4jzBHEMF2C+JsTbdJjRe21n8j/Vu42cS4+7v26p0OX/S+9wRSEJXPzbMg73GE35vQZHmaacy7sNJnzcrMtHQSIK7YKc2sTeCRVcE0pIdYW29dWNZ8KTC4U9w8hcy8IShhVxV8KyXq/FXCBc1+kx7/IuWDrRuGj/qmQkfVNnLWParmOq4ShW0dAbbupvrNTa9XfxQtTpiAo8L7eHBJ75d3ddwBZZcnt24Yabm+rjFSfPhNMNqcxgU3V6nsMtuq1f/Z0j6uN5HzwfEUwmISLnrufo26j32GfkmIBjiImQicRECA9fExOn6NvwDnh2Niawlxg8GEimWqkA+cFxEhQtSQM9GxTsM1cFRQVpyqF1+c/wr9j3kQvm4tVkrnoqSEKsDXtpYgllMEYlU0kTbl0/oaIVWtXi7No2j6dtbXaxSqugVRPrqVU/wwdmDFaTlq2Zev/Dj7dt++SDD7bWMDrOapjBBwq1bebS7xg3Wwv8uENq5zEUJphFwI9pBkGGmlRgxDKIXVdqK5kJ1ylV5RgF/aSJwRmULIrgiJIks/KrWpnKa8lzKkm/rtdmu39xfN/PT9w0cPqX+/b+KNusMOm5qvTYgqVHb2lonnyor+6mTJPHiE3axaOTYy9/+fDDX74ytnzRgFpbGa7sOvDmjp1v3dul90TL9fI6AWeAOJBzi53klkghtzBfB9K3tWemDILfJAJ94DCLTYTWAhVg0lCracmduVfpNDwnwR3TDceYbzjGeoMx8kXmyovD5F9BtKRsVaZAxUjFWDzUanX9SKfTZ8owcIs+IKIEpvQaNV3Y3ymI3yiP1pGeeXF46VirnT2+4Qymv+j95r/4/da/6P2B4mimHyCMKY5GxcGlizcYLdVDAFBQ44/MneBPDZOXbVhyYNzV0dyIE8DK4nW1HMf7RYvfbzOI4SKHZT9k70X16ELRK4yw+EBvIPMTf/ERf5FM8MPMvcGQyps8Hrm+Ra4QSXuVHaplNdCVZrjBCIk0lwGni7qja/TVXtZXggoRFCFq1pT0tOrs/0cHBugquUB65j4FnHOFtC1wL0xYnCdigzt7yptJXyZQ3Vnrwk8f3WerNLrsUjPVNJPfOZNfW2zTLL6iTbNg75lnGcVqg2pkch8hMxffIv8T/gC88hTwBwcSpQoak+KH0K5SSYaRmddrlQrkwA7WECY91AQwiBK/Jodeijp+056l0XPZA29t3/7mwey56NI9x1Ljh5bQ3oufTr99pK/vyNvTcPzrJYfHU2R9j0Py/ZrMWWIS2RWBVEeRjMD2kXSsJW0dpg/JDR24qkEamcKQbAwVC+lQCUqBo4/nzuNf5auohTiHWN/JfN/RfMdJmBVDeYzo1VD/u5FXclkMJNPjdKH4Lm6ThXxVAsOH1YXqv1T6q+XcTiuUtFyTdec/es7Mq/6BUateUJv1T+c/xLXPmx2qn6vK3lDZ+CfxH/CHem3+SY1Fg+v1xnw0j4ELTNuM+df0VlIvPwDc7DmQSAvWBUlKfiUrKCd0YGdCSKgESeQdG1AMUrWSZG9y2Eoxzy178qOD+Ub8k4MfPbnsjcZNp0fzX2DD6OlNjdTxk797cZT1rTr7+xPbf3Bv50Wmc/8PQffX0Cf0U0wtMkDu02PIfWqIsZQ/mQoE/cThMP1UzurDL/rr6gL5Qd5IfU6tze/eI5je5zVa/v0yu3FPfjfIrgLZHwPZdVCHV0oCjxmyuVDgl8vRFfRS5En3VpBtJxRMF8dCsVXLPPaQ3aOayn26VSHYHsK/+X7+bfz262VmNfxnN+Hm/I85J+u7+BOKs0v+gGQn/nE/rN80vFuNQlAiXPYPpo+0+WTzAbeEC2qkJp5BdjOLniFy9HTu5/ijvHie+ETDydxPSeFOoeyl37EM5GrSK5+zFubZtSBVdCg0uxZzds+U9VemYJZZ9tQ/H7rv4zNDQ2c+vu/QPz+17PWmzY+vXv34lqamLeR3cxOszh9eGR9/5Q8nT3z56vj4q1+e2P7mge7uA29CgBzoggws91OAazONhdhDddI8YKYMsbECki9Dj5TIwqylERIFtxOetkcFTlnoAwpFbldkpoSYisHClpQg4gXn8OT2l25NVi2a6ua8erzmG/Oc+b8ziOLOF7KbF/rzv36F8uX+ifXFV9030Ll9dadJ4+Jz/+3Hv7TyB/wdqxr+rcBzyHo0gZws6XnI++Pk8pJCRwFqC9oU9hPjx7GEv8rddO7RR4nN5d125j+g/mtBK6RhstveCCjdFKCQkk5rMRRwWKWcJLRbmylTUGTHnZVbohoo7dCAWkcVN93nJ+O1sWh1qNJX7nE67DarubgB34Jb9NfbgL92H3626rt6a/6bt+6aMloer4LaYxh/r7BDb8h/MT/iDLhMKn1ZIrozPb0rvxgu+F3FLftdV23Z49jcjXuuWB9euY8vc9z8Z5SWvQD4pHiVUxJeajZBtWfAMVretbJ5sRLsMG/9hNFouExJDUYjIaQ/z++a8Qjqmq0ffPDJtm0ff/j+1nllgmcmv0ueuxkc6jeAeYaid5e+XoB7fcWFsnBm2bsVStLmJ10RSDYC9RtdWb4W/yo3qtPgX+Tj1Cn6EC/qc52HF+h8RupHhwt9qKOXfosfpI/IXP4oXBIBIaq+Wi33o8S8ArklB6IRKdJH5valQiE/4yUYvwi48tMQfzUoKcVNmKVC4O01GIRMg18xNMuMXDcmeTEUCZFGsn8uNfZSJGEGY/TluEymCj4gcMzTqy/sffTL746OPP/bh3vv3rIyFNeGbLZU72T35PN3Spk9M5sH7pV+YLLi+/d2dxF6fOrLl8ds4dbAEnOZXucX7NmDb96x6537uoMirjAbbgH1SjyZfnsOT24p9mBWwe2s1GnAULVhsgMga6Iq8A+lcvaQZUubMmoFJac3jGORSh/2YI/MDWxlFeFiD+/rwH/caL6U0GNSU8/Oiq6aSVmcCURwI7c8i1VlmUMvrkMmXpq0OB85do/Nz7nt6TaqcyZ/a5E0XMMSSjhFfwohrQfsqZaCiGahSiULXWzlamdboA4bZ4DHdAJHts3n4FMJlAKQHACVdmx/+faGljtfuu2dd7o2LfAf+do7+PO8lfU1bnhk5YrTW1uOhbITzXc9ADYX4d3/zorE5iIpjqXPEfnewkzyUJoF/8GkYiaiaOVPXqgOs5loqagIy7I3AMZSMN4IzgTj+D8xjvRJcBzMVZCe7B/jOF0PkUJ3/JA3PXoi967ZyXDUlidPKPIJ/GP8wSqDJf8cHrJwA3Rf/hc1Dbm98nsTUNdf+OvkG/pC9q4Xxsa+syeb3fOdsbEX7sp+t6ZvQ2Pj+r6amr71jY0b+mqo42dzz/b1PZs7ezb3rb6+b+XOnnp3dzK5+91T8JtI7H5Xxoge/N9UFfUQxKlNMiMSpouK+IBwp9zs5gEYevA/5X3UQw8XfH4M7P8PsPZg/zFi/475SNYHzNdH42IukD91gerMJIaYYh+6GsYRNsZd92l5H4YTgwx4iYUAUqEJnhJIBNMn9crc77URcSdltXtzGzg761tYUaX/6nW7yKTm+ezG6YJsK8HGDxdkW0lk6zIgJEkt5EOuaISiWTumGIAXwBaWZiYR+cwLsyMwVv7aTzv3ew8+JAZCoqgUSPwthnkPwrwxMhsLs0XCMJvt/zubT2klaCsK9NzdixgVTCXnfDgCl5RBXqBHo4n8bQ11w9UTj00mumGhGyZXLPLGTS5TVFranN6wMCR2Tnau2Tw5SU0wF8RY/qymrGXD8cH1z2+XbIE6d7fdLbojN9/a1TLWFaisoG4p2GgV6PIW+CHYaBWxUZZHqF1qbQNE0QACg4kIAjMQzgXKgfrJ51fm2SLIgjsonEpEI+FqX4XZhDNURukMF/JZL8z9IsydJjO2woxlMKPtz5gRo2Q9TFgllPMcSuO08vInCUBk5tjJait8NSTbKdFKlzpbAP7zcCtN2fvvn0iVNy6J77mrY9sTQ+uOrUtbs56EVis2r+hMj6UFZ3bvxJLpbIXQBMFyU2tYowqKQ7rs1qNsbc3Q7t62sYVxo++p7SPH1yXjK3YvLNeWOZzd7dFo11B1/XBb5Q4sNg/Uze+f7/LEu6t9FlY/8sBoDfpfoSdF2gAAAHicY2BkYGBglIrbuGH9rnh+m68M0hwMIOAVfGcWAxT8//JvARsj6y0gk42BCSQCAFiGC5l4nGNgZGBgY/jHACTLGCCAkQEVeAIAK0cBzAAAeJwdj00rRHEUh5/7P+c/KZrNpLlLLgsvW0LNQnlJ7rCyYDGpSRZCSVhIKWXBaGhqdpIoNizUxAewsmCFbyCLWdqZGudaPD2n33mpo2n65Y4hd0+kA+wZ08EH634FzJXglVX5JZZOJoM3sH5Z3pmTczI6TOyfaLes5DYI3QsHyb4UmZALWq0+MU6dcpPckmzzx3kO5YtQnhnVLToSZIHHoMm1Niillmzuin2psWv5reVVt8ayjjOW2iZM8BEl+eZMdshqnWNpUNNLWuyPI59nSuftRsHqDJHtVqWXnOum7NuY0RzhPxEVTdOlPYyYB90msbkoD/SZC/LJrHlR6uT/AHnVPVUAAACkARQBbgG+AjICVAJfAnkCowMLA3sDewO1BEsEewTNBSkFdwXBBi8GqwcHBz8HswgfCDUITwhtCIUIqQlxCcsKQQpXCn0KpQsPC10LywvhDAcMOwyfDecOnQ7XDwcPSw+FD6kP5xAREFsQrxDLEVMRgRGxEdESMxJnEq8S7RMNE0kTkxOtE8kT+xQnFI0UuxU5AAEAAABJAFoABABKAAMAAgBQAF0AbgAAAPAKdQAFAAF4nH2Q3WrCMBiG32orbIMdbicycwMt6k7HwB/EiUoR8XAQbKuBNpFYGd7UznYhO97N7C0GwZOmJDx5vjcfaQA84hseLqPDeWGPvuO4gQCh4yZe0HfsMxM7DvCAT8ctesWk599x944vxx7a+HHcwD1+HTfxhj/HPtres+MAT96r4xb9x9KIrTmcrdrtS6F0ZmwhS2W0yMxJJ9FwUI1wJG2uSrMyhdSzOE1kLuLxpD9dL+biNnK726T2WDXrRd3bApYwENhyPeAMy5/bYY+STkEjo7coIGkUWdNX7kRKEGGIwfULMWLOImeyZGbFWZ3UmPEpU+Yla4I8xoQPPcUaC8xp6rrU1TbsanG83qzHG3XrTvwDhwtYLwAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } Studies have shown that the frequency with which shoppers browse Internet retailers is related to the frequency with which they actually purchase products and/or services online. These data show the age of respondents and their answer to the ques±on “How many minutes do you browse online retailers per week?” a) Calculate the associated correla±on coeFcient and discuss how strong you think the rela±onship is between the age and the browsing ±me. Use the Correla±on procedures within Excel under Data > Data Analysis. b) ²ind the correla±on coeFcient using the Excel func±on CORREL. c) Set up a sca³er (xy) diagram with Age on the horizontal axis. Add the chart name and axes descrip±ons to your chart. d) Add a trendline to the diagram. e) ²ind the equa±on of the regression line. (Hint: One way to do this is by adding the equa±on to the trendline. Go to format trendline and ´nd it there). f) Predict the number of minutes spent by a 40-year old shopper. g) Can you use this data to predict the number of minutes spent by a 75 year old shopper? How about a 35 year old? var isIE = false; var f1 = [['t1_1',1899],['t2_1',1443],['t3_1',462],['t4_1',1942],['t6_1',1888],['t7_1',1932],['t9_1',1242],['ta_1',1723],['tb_1',490],['tc_1',633],['td_1',1871],['te_1',949],['tf_1',1206],['tg_1',1931],['th_1',229]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
Alcohol withdrawal occurs when a person who uses alcohol excessively suddenly stops the alcohol use.
These questions need to be answered in a minimum of sixty words but no more than one hundred and fifty. 1. Studies have shown that the #1 fear of
699026 research-article2017 CDPXXX10.1177/0963721417699026Bensley, LilienfeldPsychological Misconceptions Psychological Misconceptions: Recent...
Question 1 1.5 / 1.5 pts Laws in most economies in the world allow selling equity stakes to crowdfunding backers. True False Question 2 3.5 / 3.