An agent would like to predict the monthly rental cost for apartments based on the size of the apartment as defined by square footage The agent
An agent would like to predict the monthly rental cost for apartments based on the size of the apartment as
An agent would like to predict the monthly rental cost for apartments based on the
predict the monthly rental cost for apartments based on the size of the apartment as defined by square footage The agent
An agent would like to predict the monthly rental cost for apartments based
on the size of the apartment as defined by square footage The agent
An agent would like to predict the monthly rental cost
An agent would like to
An agent would like to predict the monthly rental cost for apartments, based on the size of the apartment, as defined by square footage. The agent

Category:
Words:
Amount: $20
Writer: 0

Paper instructions

Please see file attached and briefly explain how the answer was derived. Thank you. ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:75px;} #t2_1{left:76px;top:90px;} #t3_1{left:273px;top:90px;} #t4_1{left:76px;top:105px;} #t5_1{left:256px;top:105px;} #t6_1{left:76px;top:548px;} #t7_1{left:76px;top:595px;} #t8_1{left:76px;top:610px;} #t9_1{left:76px;top:633px;} #ta_1{left:76px;top:657px;} #tb_1{left:76px;top:680px;} #tc_1{left:76px;top:703px;} .s1_1{ FONT-SIZE: 46px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACEIAA0AAAAANcgAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABKwAAAwKmUND9Y3Z0IAAAAoQAAAAuAAAAOCX+AcJmcGdtAAACtAAABRIAAAp127YujGdseWYAAAfIAAAV6wAAImLqovr/aGVhZAAAHbQAAAAxAAAANq+EQG1oaGVhAAAd6AAAABoAAAAkBgIErGhtdHgAAB4EAAAAxgAAANTGZRFUbG9jYQAAHswAAABsAAAAbONd7HRtYXhwAAAfOAAAACAAAAAgAfALeW5hbWUAAB9YAAABFgAAAhOXL44TcG9zdAAAIHAAAAATAAAAIP+cAMJwcmVwAAAghAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nOWRy07CUBCGv1LacikLKJRbCZcQUhouheLGhZdoTNwZ4wu4ND6AkbcyvoBv4c6NeyWuXGiOUyDRKAvj1j+ZOTOTf3L+/xxAZxUemmS0N+mk0mySLGTg05IqJbnPgBFTtthml30OOeKYE8644Io5t+pdKdn4yTxYM08555JrbmKmepR4Ui9qoZ7Vq1R3oO5l+sAn9JWqb3DXZ0GqHjvsLbuICSEz2qK3ThEbkyoGJXLkyQo3QVp2mjhUsMgwFl9lcd4TxcG/84tmxh+e0JOGaaXSmaydyxecYsktV6q1utdottqdru73g8FwNA79aVQTq9CBbnz9NE5D0RtNaCAvsMSIcNb+qj1ZL9pm1SiJpqybSBeaTsXKjEWHt8HoL9DrB39b3IwP+yhmdAB4nGNgQANbGTpBmFWJgYG1nfkSA8O/bezz/t5iNfz/Cch/+P/Tv4UgPgAbphHYAAB4nK1VaXfTRhSVvCSOk7S0WSioy5iJA7VGJmzBgElTKbYL6eJAaCXoImfrynd+g37NU2jP6Ud+Wu8dO2YzbU9Pc3L87jxdzXvvzpsncYyo9CgQ16gDJc/6Ulp9KKXOo7ima14WK+n345psJp6SFlErSZTMdgYHcoHL2Y6SNYI1Mp71Y3WksmygpNqPU3gUn1WJ1onWUy9NksQTx08SLU4/PkySQApGYZ9SfYAUylE/lrIOZUqHXq2WiJsGUjQa+aiDvLwXKj45nnULjRpgpDKVYbt8rVzPduK07w3uJbFO8GzzfowHHrMfhQqkZGQ68o+dghOlYSBlLHWolTg6HEhh70jcfQSUUiOQKaOYVaGz/2fJ2VPcQTbThJR0y2Y1PWQ4vs4rpXqqOpkeUEVbtONRGFEewp/El2JdD7aGL1dMXi53xB1sBTJj4FJKZqK7JALoMJEqV/ewqmIVSNUoOWUzVEhoH7FkNkpVluI8UEMgs2Z7N86n3a1kReYP9ZNA5sz2Trx9f+j0avAvWP+8yZ256EGcz81FyCCUqp+IE0mhHuYz/KniR9xlCFOs9+PchVo4njCD1gg706hpvHaCveFzvlKoW0+CSnrIvwfvy8q9Qc/ccRY0dInE2Th2XdcezlvIstzZjR2Z06FKEfGP+XnXmXXCMEvz+bIvj33vHJR5G8S3/EBOmdylfcfkBdp3TV6kXTB5iXYRktMumXyKdtnk07SnTV6hfc/kM7RnjFT8fxn7LGKfwTseYtO+j9i0HyA27YeITfsRYtMqxKatITbtOcSm1YhNu2JU2/ZH3SDsfKoiSJ1GVlk05kqjFsiqkbovdfToeXRgT71BVD1oaZU9iP+Wga4I5MJYaXdZzjfEXVqzxX38ohAvP2oYdc3m6RtHihM2x7WYGJR+Z/l3h39bG7qVN9wlVGJQNxKdnCd6c9AKJDDN0+1Amv9ERR/tg34RR+Es11VT9Xi/IeGdLOvpHi5pvOdxsmCONF13aRHx1wyyQo/j31JkquMfZk2tVDvDXpeeP1bN4R5S4pDq+EpSXtnNnfhpQRWV97SwWjybhJwqFUwnbdm6iwsUvXobUg6P4bwsROmBlmI0OMDjQjTwgFMOjFffGSAlDGndxdlpROiiLhgbBftNCKLtiMKTlNqX0Ujl13bFjqyobpPALyaYp2vJ81g48svUQMFTXh1poNuQ5op1SwX3RKmu7jEYT+uqlYwFjBR1duOmauOzwoxHTsVcxpLXsbozbPXOvh6e0qS2HR2LZu9eG4WPTs4l5Qft1fpOznHdaNWkZF0M1nbSzFfdRdy662N3/0V362X2RM4NI2v+xE1vGrnkZwjMTkG2r3NwJk1ZBfXWuL1OpGVnafR5EzdkuF3b8CsT/oc+7P1frcf0OVTaGnPjhcOuJaMcb1OMk/o3WH9NjwQY1TEu+ROUvDS8mccOL+FCUwwu4uYb/J9iRrmLCxIAh0YuwkRUrQNdVRefohOdtgx7USLAjjl2nDZAF8Al6Jlj13o+A7CeO+TcBrhLDsE2OQSfk0PwBTk3AL4kh+Arcgj65BDskHML4B45BPfJIdglh+ABORsAX5ND8A05BDE5BAk5NwEekkPwiByCb8kh+M7I5bHM33Mh60A/WHQdKLX9hEULi4GRK2P2HheWvW8R2QcWkXpo5OqYesSFpf5oEak/WUTqz0aujam/cGGpv1pE6m8WkfrY+FI5lOJK/wm/H8Ff4wH4MwAAeJytWQlwG+d1/v/9dxcAcS7um1wscZA4eIAgxHsJ8BQlWRRISRQl6iAlUTclSzElW7ZsWYpkyzoiH4riOLKT1G5iV7TT2I3dpo49zUzasZNoPJNxEndix9Np03qmTqaT1hahvn8B8NCRtuNiSGB3/+u993/vve/9i1gURYi8z21HQdSE2lAnOvV9hBmEMwMzFSvXyg2IMJgheBJhlsHsNoQQQxAziljEqVluFGk0/CDieUMWqdWqQaRS6VVdHrn+5mE80iBeM3LL8PlBI7K+UxYEayQkVXsry5xRSztJ1vsZm9XAGrEUDrWzqYaQFDAwUiBsaWhnio1wm2CwKIhp+P/UuSSzLNY20Rf2RRtqRFa4R8+6o6l4eXdjuDHs1rp0G02+sMMe9gqCN2x3hH2m/EvkL66vqifd199gl9uCPlOgfaQxtaypOlhpn9gv1lWF4ulwbZNgE2yzLnvEJwi+CAxUJmDHP/tqip2lWiE1QuxlLoD0yI4qZdGCWYIzoCdGLF6HCNFlGYygtUsQJEsFZ42KUiAUJiIx4CjGSSySBA4bsIq9/JjTp56a/WgfLzoew5/8IP8Wfuv1MqsG/pxm3Jr/O8HNBa7/mBGccjAkOxGscAb28DXyIXKiZa86eAYMD9sXgO2zwMIoh2FhY5ZjGYbRM7A7DkTvoQnnEMaOuZYRWQctTuSUbEGRt0STQrLeXo7bsWJqQRKo/XmVcGaHxckYO57etvLwquqZ8a0DDzWSa4Jlsmc4tfl0bvYCs2/Pkd6O2VrFLkM3PiVryG9RFeDrtKytALvUsAyvYooiRhBLGMIyk9BXxTOqUZCLyyGOc2Q1mOdBejWj2M0jx+7cVU1tqwxQdLJhUMYdrcaorra6KdpUGfB5nHaLuUyNqnBVmTEqBkI12EAodlKApfQctOBxSd9gPW0wEJvVzxCN28vZQ/0r16ebxgeiHWc//rPNG9qH2+MOs1tdMfjGgVXHVsfzXbGlmRbfoW9tT7iqm02uUSkdspR3bs407xpKsQMH7q4IVZgNS1YsT205lZs9t9ss1vn/nvPVdkZCaUlABMn5K+QK+Qil0QAaQU/JJjVWqWsFhlF1VDMcIWAyN5gsVoZV4Ecq8COCOJ6AH2FspB6IchowhCMLHsnmEMu6WDBbDSBEjbB68tZhtx0xInuXL8MoN7hsZPlIX097qyQ6HSYDS1Aap7XGKK63O0Sb1YjtBfcD1IKJ+JIvphoa0wlc+m5ncEOCLXQBl4Xb+kbF2Dx9gN9t2xnFKDJZnhp7cLnc6PM2rp06NLW2sXX/N7dvv7ytfnigqra1tfuu1NhDeG9QHhrbHK9r93dsyWa29VTmf7N5fHzzxnFXXT/5yOvulHijvKzv4Kq40RK1SQETq7HWDXd1fGl9urpvLNk34bNk0tVj5VUnR/oO5mKf/4sUc2l5VuXuT4pLqpzueAfTsnvNyI4dI9HeBh/F7sCN35OXwa+CKIH65G4HDWkZRDCDCYCQR5jweFSNOQ7lVAUrMoxiRRvbFQ5hVF0VSoQTPo/VbNRrVCiIgxpqPhq3eEn0E2oPxcXmkegABxMbEgzjWPvk3nazc/YAkxic6pbHsglBa+LrxZFte1LbXjza03HPd/fee87M2ALyBvJh89RzO6o860+vi/sqfRq1HG4KmrtOvP3AtpePLz12/mjLeG8EUBC48SnzCGdEAdQv92gwJuWY4ysw4kgG8ZjDPAeuxeiyLIa2QfAuABUoN0SVs6EujApeJJiMep5FARxQG6NcIJQSwG/acNrSjluwINpEwWqfVw3jZ/cfmTLaLlcxNtM6rM//IR1zB90WtUbLNcSPGB86zAxZLT1WHDea8y8fm/2r1laD2aDWDFUnaGyzIcR9k7yH4qhC9oUcaghoOAPJhYYwFhOiJ13VYrSVRlQLLOiw+LGjvShL8baxcIcBqsUgS/gotj1q9bJXywyc2qp9i3Obl1ld3A+1ZrXW+j3ObXk4/84ZV9k7ai3Hlal/pvWeINfsxtnzgc6Kik6JOWi0WIyzZwKZis4sM2WyXk+IzEVH3OFIOGb3iqiEnU8AOxYURjG5SgnErAISDjNMKUrZrBiV+6xhW1irQRZs4Uv4KPlSO2MBS6YAETQ+UZ9hfLtenO7snH5x166XDnd2Hn5pV+/OXkmCr75d9HcX+bD3+Ot3H3z9eC/8Hrwbfq9frhs7tWbNqbH6+sJvHYgItj0KsfkFck3JG0YVZP25vAEpQQkpoEkO8F7MG6WncE+bSA60spH5vBEULRLkDazsf2NaSApKQDVgRRcBxyFXPJie2Wl2MqaOrynpg1ybvbD3cG878/PribkUwuwryHcRvrLcWQhXTtkGS2MDXRZyAV0cEYGYYC1JwNkZ7uxnB6Aj2H0p2P1bcOlAITQl66yYY7welrAcTTiVoJsPhDZQXDM5UMSRVWGWhSzDl7KMeFM7r6QW2ms+tdhdTowq/M6QK2S3mU1qHjmwQ11KK7i0dRSPYIQgtUUCF2MeaYHsaW5/ZjL35U0NTbu/tmXk/rqZ/PLcvamavdkT58X2dYLl0MD6zvvfOLL7jVMrWtKM77MDDyzvxu93JN/6y42n1lQhdOMG2gu22co9CL5sgMsAMiLK20zMf6GQLIHgyuYYFFc2Fq0Gwlu0Gsxi1sx5omDf+Y/qFQ5z3Zu66kpWB1TMWd14J6uTa9cT0BHG7GbP43HuFKDdLBvp3lFTGVBXpJIRongBmmlqxeNWKe5yxUSrVYy5XHHJymldcXoXd7njAas1EKdzHoPlHoGd9KNaOW7A1O+pBAwioxCsONgjKhpbQCe0+JFfCEaCosoK8lH8YcXrwd0hBmDKtnACF0SvjVgceswa/I4r+XcMXpPgMeDeZ2wV+vx/GFyeOMDp+l+XCXjAZM4/YHSVacuFvNdoxhes+nwcJGLQY/lXye+A1VCU7ZF1Xg+kU9aOGQVlfoqyIqwU6lUCkw3ARMCACspowxyqHLf2GZEtLmB3BZTBQg5QTW2OWhaRMsWyobCAKS/zw7NGGioeowRNaL8yOXRqU0PznqcpxDBZdbQhsa/r5AWxYzT/KucVLAcoyl4HlJ1e0dqYX8VeWdaTjxRBFil44HFwqedATyc6MzATB720OkAZcEygjBkPvSOlu5GC4hYaLuY4J+inBw5SGFvgnaQU/hxzzbIfeAlwO3byZmZa6DAyF2HEypuZqd2h4sEENDqqhONbvQ5GF394Q3mj3UBchmR5vDtdbYbY7T6/eUpvfMil9aSW1c0+SXXrhkjRDBE6hprkxhjGnBvyOwMYwwQjMklLGMJsAzmKHHNBcociJULdOVp09lJsLmS9hfmcCkiw2mgwVtR212e2ZqVg16bW5qX1otmqS1asWLe5fvWT+zqa931z58STzSSg1Tp9zuTGU8NrT4/V+Sv9QiGVP/jG9J4fnBzItoLc5yjbBxTaUFyuthKF7oN1DLdh9IjmbZtkk4SC0YRbuPy5mbYntkAgrprZsnXgWCN3dvbtzIp5Gt/XMVtXjMTch2CrKFr9WrWBJ4QtpQo7rwC9mJHVKqCpNCd7ZLeyl7yCcBpFHPONI0qMiKIoSGYJhUWNfW5HCTWY8l0S0rBQ3IuTVgdj9Lb1rIxvfcBj6x7aVH/l6szk5tiKFmlm85g8laCVyISYrrLv3dC4rN7x5itUkQOHfC2rm+jVoQPZltmIgm0t+PAFCF925JGdBk5Jf3PhTkBdsUCAmOkOR7EF30wt8FfVHvfxF/KPXHI4+Y/VRo43qj/gvcKZ/G+sdvwwuWQ3zD5tq7bZozZmi9FG1+sB9vVrsGErapObWwFWPgyOswBvQGfYhXhj2UJEYLqal4SDgQqPSxJ5CKf8AsjxpRCQLmxtssAW+BL2mOd1TqNUl02E22POSGZ47XAmkhg5Prz5G+kqtV0wVyb7GhPZmL0qMzwynKmKDd23cvTxBlJrt7vs9lDSF6qv9PkjzbmWrruHajOpjN7gET3uaHNFJBX0lofb1nY0bV+RaG0E/SBYMePcfRCH03KDYGKoLTmqYNHfDVQjNEhwARccp+dKYdsWDNohbCeFcAK34WRJeBX1LgPjw5RTfmfc5v5KfGh6oLzFwzGxYHW21o1V+RukQ8/YrX0bho6P1JRp1jo4e8Nw+9pj199UKuP8Z3ga/RPyIocMFQvuKOUmPe7yuCoZUzS94ChBFQ6lGtLtJA0GPSP4o25/3G901XTF/HqDxl/u5rXJjml7xG+2B5O+6Nj6NUGvzqQzlFUmllR0KazvPMSU34Fv2pGEdsoaj9sCzEPxlQL1oG56c9DnwYXpJheSwqJ2mgr086mBlugWJ4TRcp9Dckqwii0iCZAUFrh2EQ4QFBfmhND5mdbLE8OnNiWbd1/etOnB+jI2jNsG700m9ma+fP4YuP0PenOZ+16euuetR5f1d64JktXFZPDmKy+AHVtBuU/AV4zIL3souyhWB2DNwYI1BZtgZYH7WXkV3S5a/2ExJTKf6MvydfgXs2N6Lf5ZPsk8SU5ZJMNs9+l+fcDE/Og0UtgMYIe8BfwB2IyTshk/9QpgMxuhGSovI5RcDKYcTgGTukAFVaq5S6hSisDSQDaiOQPjRKwygH3YJwiWoOQoq4gWMEqe4R4GPCyRUwZMITo3K7ppJlVxJhDBi7zKLHa1bQFIGylGaSkX4AGiEKRE4eqkzf3U+YccQcHrzHQw3TP5/UV8PnDl2yy/yagenTx2XSYyhSdlqxCDnof8aoca86FCAtVZgLJ63EShrB7llpRuiznWN48bxwJmWoxbgCOKG+NNHHdRn3kcBZ3BeRxRcrSYvqYbk3gxfX1+pu3pCYVY7H56y8bjSb0qnP9+7r5UfH9W4Rbk2mcf4/f7hksENts2UHn9Jcpf21IF/gr7ffLGv+Oj6J/BSwzoZGGvkfvzTQp7BOqQUxJXVyTIeKNKrKb79i4XQCpaBdKDNDJIiz9dtgA+ymCRShAEDnSwKVuRIu/mH3wtf4wLXPr8S+wjlwo4W6/kzjqKs/WUL0sQmevkRBzqXR3FWGauTrPSqZlBpORRBgclmxVMU8fUce5ogRv1wlzPwVy1dAbgD0T7J2bAqDJgtZj0qBbXcvNFnopyGLHeDvhRPKadlEo9iH01cMvwubOTLdH+Tan81dByCT/rqbj+bYOAn2rINVdIratqa1a2x8rUYWmNrn/vOa6OFnj9Rw/sSeef1erK3VubhLAJfyu1ZXxbU9PqJq8v2VsdsHGG0UfHaqk9NkC8egLsCvbYQO0RhMQsy230MCAeYwjnhBRFQCWO5QiwM3pUgLlRUF859dUtzFGWiBSKSJJKpH62AuY9CfMm6GxQWuBYFGZz/F9nC6jsNKJIIlkY3RJMGGA5n+zgkSpsEclYPJW/u6l+pHri8mSq9+h3tjRNrl/uT5o95ri8ujWzc2lE6p7s3rxncpKZYN+XEvkXtWVtOy8M7/jzadkRqvf2Or2SN7Zyf0/blp5QZQWzvYCZihufsupCbKqgsSlcjE3fhuaLssGPsUoA5mjGQGKLpKhm/pCIqqVWa3JIozEAn4XOg2VYpVKqaDTE4mLVmfzfjKCFKGWhQwUWCk6McWNDrBoHcTAsBSVJMGvB/GBYkJl8xBlRJbpXNvhgChNIKCyQMLhovcIq6tvIVXXnfrdIQ0ldJaosSCIAqcNKTFx0GCTdfFxEPprJ16SiLsllVk6EYtOd+6Z3m2xPRYhVWEfepMFy4ZnQ4uMiquu2/Mf4F9wvkQfx37NocCSKGxgI0e24A/tJIa0nmMZ0oxm375hQE16nXtG3tcPn69jat0Kt44l6Ygez8V18YsZoN+u42qlf/vo3hw59+Ktf7atl9YLdOINPFPz9EfD3A4BpDYqA+agtMUPfaLCDtEzRUfoN3BYeaJAGQhGl3DQWiUo8Igdmf4o/yEuvcYHH802Pz74DExXyHvjafN6LFrDFPgPJYd/ATBnslFmCECeAC5lpeYlVajYD9ZSOtix8SjLQT4YW8x3HWO84xn6HMcpDdvHDEfopiNYIGQbn2EIKpim0eKnT6XNIrzdky7BajQYhUdF8atBqSOH9UEH8ZmW0np4pFYeXrnW6ues7zmD+Qutbv/D69i+0fqg4ms3pATvF0ag4uPTwDqPlBgo+SFejCyf4n4Yp2zYiuzDu6WptximcakjW1ymsBti3wyhFi3mW+zXwowb0fhEVJth8CG/g+RQvAYoX2Qw/7MIGljIT2j12e4ssEkl3kx2qFTXQYjPcYYRMj7GhUivqjm7RVzevrwy5HRShataW9LTrnX+iyrgtpaP/352wuS8mho8MlLfS2iNU3V3nwc+eO+aoNHmccivTMpM/MpPfWqR6KxaVIv23MD+F/WH0PBh8A4QBUmQ9uuIxG5ROQlSUhCTe8Oqr0E554r2QT1u4eyD3tKCUXF94RXvzS1Z67lI4CGBZpYa0cfSkIuat5G23fZ1aYBq3eZ96r79/9UTz8uMbG2OZu7rrWPO0nq2Gq0RF07JoS665Uuc03G8R425XXLRYlGM70cL+m7c+5IitOti3dOfKloZkxeNXopmmdHa4pTpT44LUav/8J654wGIJQP+YaDaLMUW3ixBXPwI9DciFquUw0APQjtCXxAXOqps7fnQ5BCN004sCLYPpzpRkDheoQCiKcf+r+PD0yweb2u65evfbb/fs7g+e/crb+Hd5Oxdo3vnUhvWX9rWdj/RNtN7/KOyBhZ4xQl1jRm7ZUYYXHQHAkjHRRMywF7eU/4z/G/nHL1i93M/1ZrXKYniP9wiPkmtQ9J+VMgExKzEHoOhXdGObQTcXMN16ucaA6cEJYoGfI5aMKs6iaFh8N4yQJHrd0NsZFwWVeZGOxVNMeohZUhcEA20np6/ub6xaPtUr+A1483M17vxPjJJ05Lt9e5YG8799hQnM/iMXSG788lD39KZus9Zjmf3PIH7PbjkR7NrY9K9I2YNHQc4XQE4drF2o8Eqmp2y2YAwxIlYqFR7YW1TEUlEE0ct2hn1hzdc/OJlvxj8++cHX17zRvPvSWP5TbBy7tLuZufD4718a4wIbX/zDxem/ebj7Ott9/IeQ+85BDXCGnFVqgHOwhAQ1QNXnm5RaQMrzyCu7wDco+RhdWBNEIkHWTzlm9sbvWS/w7xjqkjstYFkgk4jybxZsiyZ5oJcs4raVSKU1WzK3DQMdDwfpyyzBqOJQDMdUlJKX33R0r7r1cC/dSF436Pp6f3bh2E8v3jV06b1jD/yor5U3G4SqzJb+1ee2N7VOPjZYf1e2xWfCZt2KscktL//xiSf++MqWdcuHNLrKaGXPib89fOTNh3sMvni5QeEVafDtraDHgnMhltzxXMj6/3MuRHxGt7EKXDmdS3uTuZ17d+aSS3Y9PXH4H3pTKpvBUtMz3t28rkMsNjWMXxjbcVVmc97yYHl5ur863ZcMRZLLpwbXPDUlb7hrtVZfVVcVaF+TalmWlEJ1K7+0tvv41rae7H8DjSWldgB4nGNgZGBgYJSK27hh/a54fpuvDNIcDCDgFXxnFgMc/FvAxsh6C8hgY2AC8QE2ZAmmAAAAeJxjYGRgYGP4xwAkyxgggJEBFZgCACszAbgAAHicY+Fj0GZZyMDBYsLQw3iegYH5KkMI8xEGB+bfDN5M6xiUWHcwiLJYMHgD5WsZrzFMBtJeQDqPNYuBAcRnPMeQw7yYoQEo3st0iqGZOYnBFcjuZ0thmMw8n4GbWZHBjamQQYLxP0MPUHwCsyaDDYsNgwQYA81iYmVoY34GZPMxxDC/YXAH0rHM1xn8WEoZFECYKZchjXktQxdbGYMECDOxMCxn3spQzaIENH8ugzBLBNBNbxi6mVQY+llcGJyBas0BSekrZwAAAAAApADiATABMAHGAo4C9gNQA6wD/gROBGgE3AT+BQkFIwVNBZsGDwZ9BtkHEwd9B7UIJQhvCKcJEwlDCXcJvwo7ClMKdwqdCv8LKwuRC+sMYQyVDL8OBw69DtMPQQ9/D68QAxA9EF0QwRExAAEAAAA1AFoABABKAAMAAgBQAF0AbgAAAPAKdQAFAAF4nH2Q3WrCMBiG32orbIMdbicycwMt6k7HwB/EiUoR8XAQbKuBNpFYGd7UznYhO97N7C0GwZOmJDx5vjcfaQA84hseLqPDeWGPvuO4gQCh4yZe0HfsMxM7DvCAT8ctesWk599x944vxx7a+HHcwD1+HTfxhj/HPtres+MAT96r4xb9x9KIrTmcrdrtS6F0ZmwhS2W0yMxJJ9FwUI1wJG2uSrMyhdSzOE1kLuLxpD9dL+biNnK726T2WDXrRd3bApYwENhyPeAMy5/bYY+STkEjo7coIGkUWdNX7kRKEGGIwfULMWLOImeyZGbFWZ3UmPEpU+Yla4I8xoQPPcUaC8xp6rrU1TbsanG83qzHG3XrTvwDhwtYLwAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } An agent would like to predict the monthly rental cost for apartments, based on the size of the apartment, as deFned by square footage. The agent selects a sample of 25 apartments in a par±cular residen±al neighborhood and gathers the data shown in the table. a) ²ind the correla±on coe³cient. Is it strong or weak? Posi±ve or nega±ve? Run the Regression func±on from the Data Analysis tools and use the results to answer the following ques±ons: b) ²ind the equa±on of the regression line. c) ²ind the slope, and interpret its meaning. d) Compute the coe³cient of determina±on, R Square, and interpret its meaning. e) Compute the standard error of es±mate, and interpret its meaning. var isIE = false; var f1 = [['t1_1',1759],['t2_1',770],['t3_1',1100],['t4_1',700],['t5_1',523],['t6_1',1411],['t7_1',1873],['t9_1',794],['ta_1',813],['tb_1',1519],['tc_1',1299]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
An agent would like to predict the monthly rental cost for apartments, based on the size of the apartment, as defined by square footage. The agent
Regression and Correlation An agent would like to predict the monthly rental cost for apartments, based on the size of the apartment, as defined by...