Make an XY scatter plot linked to the following data on this sheet The scatterplot reveals an outlier Copy the data to a new sheet or a new area on
Make an XY scatter plot linked to the following data on this sheet The scatterplot reveals an outlier Copy the data to a new
Make an XY scatter plot linked to the following data on this sheet The scatterplot reveals an outlier
to the following data on this sheet The scatterplot reveals an outlier Copy the data to a new sheet or a new area on
Make an XY scatter plot linked to the following data on this sheet The scatterplot
reveals an outlier Copy the data to a new sheet or a new area on
Make an XY scatter plot linked to the following data on this
Make an XY scatter plot linked
Make an XY scatter plot linked to the following data on this sheet. The scatterplot reveals an outlier. Copy the data to a new sheet or a new area on...

Category:
Words:
Amount: $20
Writer: 0

Paper instructions

Please see the attachment and provide a brief explanation. ATTACHMENT PREVIEW Download attachment .t { position: absolute; -webkit-transform-origin: top left; -moz-transform-origin: top left; -o-transform-origin: top left; -ms-transform-origin: top left; -webkit-transform: scale(0.25); -moz-transform: scale(0.25); -o-transform: scale(0.25); -ms-transform: scale(0.25); z-index: 2; position:absolute; white-space:nowrap; overflow:visible; } // Ensure that we're not replacing any onload events function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') { window.onload = func; } else { window.onload = function() { if (oldonload) { oldonload(); } func(); } } } addLoadEvent(function(){load1();}); function adjustWordSpacing(widths) { var i, allLinesDone = false; var isDone = []; var currentSpacing = []; var elements = []; // Initialise arrays for (i = 0; i < widths.length; i++) { elements[i] = document.getElementById(widths[i][0]); if (isIE) widths[i][1] = widths[i][1] * 4; if (elements[i].offsetWidth < widths[i][1]) { currentSpacing[i] = Math.floor((widths[i][1] - elements[i].offsetWidth) / elements[i].innerHTML.match(/\s.| ./g).length);//min if (isIE) currentSpacing[i] = Math.floor(currentSpacing[i] / 4); isDone[i] = false; } else { currentSpacing[i] = 1;//too long isDone[i] = true; } } while (!allLinesDone) { // Add each adjustment to the render queue without forcing a render for (i = 0; i < widths.length; i++) { if (!isDone[i]) { elements[i].style.wordSpacing = currentSpacing[i] + 'px'; } } allLinesDone = true; // If elements still need to be wider, add 1 to the word spacing for (i = 0; i < widths.length; i++) { if (!isDone[i] && currentSpacing[i] < 160) { if (elements[i].offsetWidth >= widths[i][1]) { isDone[i] = true; } else { currentSpacing[i]++; allLinesDone = false; } } } } for (i = 0; i < widths.length; i++) { elements[i].style.wordSpacing = (currentSpacing[i] - 1) + 'px'; } } #t1_1{left:76px;top:75px;} #t2_1{left:76px;top:398px;} #t3_1{left:76px;top:414px;} #t4_1{left:76px;top:428px;} #t5_1{left:76px;top:452px;} #t6_1{left:76px;top:475px;} #t7_1{left:76px;top:490px;} #t8_1{left:76px;top:514px;} #t9_1{left:76px;top:537px;} #ta_1{left:76px;top:561px;} #tb_1{left:76px;top:576px;} .s1_1{ FONT-SIZE: 46px; FONT-FAMILY: BAAAAA-Carlito1; color: rgb(0,0,0); } @font-face { font-family: BAAAAA-Carlito1; src: url(data:application/font-woff;charset=utf-8;base64,d09GRgABAAAAACIcAA0AAAAANOwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAABMAAAACgAAABgD/oNq2NtYXAAAAFYAAABIwAAAr5m+FPnY3Z0IAAAAnwAAAAuAAAAOCX+AcJmcGdtAAACrAAABRIAAAp127YujGdseWYAAAfAAAAW8QAAIbYw71EMaGVhZAAAHrQAAAAxAAAANq+zQCFoaGVhAAAe6AAAABoAAAAkBgIFEGhtdHgAAB8EAAAA1AAAAODW8BIdbG9jYQAAH9gAAAByAAAAcvbd7txtYXhwAAAgTAAAACAAAAAgAfMLc25hbWUAACBsAAABFgAAAhOXL44TcG9zdAAAIYQAAAATAAAAIP+cAMJwcmVwAAAhmAAAAIEAAACBmng6OHicY2BmYGCcwMAKJM8wnmFgQKcZ4YABG3AAESxgJhsDExYFAK+yBb54nN2RvVLCUBCFP1BC+AmEEAZIAiSBYUhIBEZ+Gi2srGwcCy0tHZ7Ax1IbnsL30Aewc+JeobSi9MycvT+7Z/fcucAJe3rkJJLbyUntPjnlXVYHU27K+Jyx5JJrbrjjgSeeec2+s0xqfBIWkruS3C33PLLlReWyD9Uz+xLuhG/ssZ/QkZlKC7Ew4UKUCiEz8qwYSc+xVHpSEzOV6Wsi5thoTKjRRqeLK31aFLEYissmDelkYlBnQF/cbwjokf6z15DT1GflC1pRL5UrVaNWNxtW0261O13H9Xr9gR+EpdF4EsXTJJ3NF+Esv96sRovxwTTnSu/58XS5/j0XVIjmtsRK9VCjTWptvet2xJE1LDcbiWnUB31nE3AceumRwr/xA2UtRl8AeJxjYEADWxk6QZhViYGBtZ35EgPDv23s8/7eYjX8/wnIf/j/07+FID4AG6YR2AAAeJytVWl300YUlbwkjpO0tFkoqMuYiQO1RiZswYBJUym2C+niQGgl6CJn68p3foN+zVNoz+lHflrvHTtmM21PT3Ny/O48Xc17786bJ3GMqPQoENeoAyXP+lJafSilzqO4pmteFivp9+OabCaekhZRK0mUzHYGB3KBy9mOkjWCNTKe9WN1pLJsoKTaj1N4FJ9VidaJ1lMvTZLEE8dPEi1OPz5MkkAKRmGfUn2AFMpRP5ayDmVKh16tloibBlI0Gvmog7y8Fyo+OZ51C40aYKQylWG7fK1cz3bitO8N7iWxTvBs836MBx6zH4UKpGRkOvKPnYITpWEgZSx1qJU4OhxIYe9I3H0ElFIjkCmjmFWhs/9nydlT3EE204SUdMtmNT1kOL7OK6V6qjqZHlBFW7TjURhRHsKfxJdiXQ+2hi9XTF4ud8QdbAUyY+BSSmaiuyQC6DCRKlf3sKpiFUjVKDllM1RIaB+xZDZKVZbiPFBDILNmezfOp92tZEXmD/WTQObM9k68fX/o9GrwL1j/vMmduehBnM/NRcgglKqfiBNJoR7mM/yp4kfcZQhTrPfj3IVaOJ4wg9YIO9Ooabx2gr3hc75SqFtPgkp6yL8H78vKvUHP3HEWNHSJxNk4dl3XHs5byLLc2Y0dmdOhShHxj/l515l1wjBL8/myL4997xyUeRvEt/xATpncpX3H5AXad01epF0weYl2EZLTLpl8inbZ5NO0p01eoX3P5DO0Z4xU/H8Z+yxin8E7HmLTvo/YtB8gNu2HiE37EWLTKsSmrSE27TnEptWITbtiVNv2R90g7HyqIkidRlZZNOZKoxbIqpG6L3X06Hl0YE+9QVQ9aGmVPYj/loGuCOTCWGl3Wc43xF1as8V9/KIQLz9qGHXN5ukbR4oTNse1mBiUfmf5d4d/Wxu6lTfcJVRiUDcSnZwnenPQCiQwzdPtQJr/REUf7YN+EUfhLNdVU/V4vyHhnSzr6R4uabzncbJgjjRdd2kR8dcMskKP499SZKrjH2ZNrVQ7w16Xnj9WzeEeUuKQ6vhKUl7ZzZ34aUEVlfe0sFo8m4ScKhVMJ23ZuosLFL16G1IOj+G8LETpgZZiNDjA40I08IBTDoxX3xkgJQxp3cXZaUTooi4YGwX7TQii7YjCk5Tal9FI5dd2xY6sqG6TwC8mmKdryfNYOPLL1EDBU14daaDbkOaKdUsF90Spru4xGE/rqpWMBYwUdXbjpmrjs8KMR07FXMaS17G6M2z1zr4entKkth0di2bvXhuFj07OJeUH7dX6Ts5x3WjVpGRdDNZ20sxX3UXcuutjd/9Fd+tl9kTODSNr/sRNbxq55GcIzE5Btq9zcCZNWQX11ri9TqRlZ2n0eRM3ZLhd2/ArE/6HPuz9X63H9DlU2hpz44XDriWjHG9TjJP6N1h/TY8EGNUxLvkTlLw0vJnHDi/hQlMMLuLmG/yfYka5iwsSAIdGLsJEVK0DXVUXn6ITnbYMe1EiwI45dpw2QBfAJeiZY9d6PgOwnjvk3Aa4Sw7BNjkEn5ND8AU5NwC+JIfgK3II+uQQ7JBzC+AeOQT3ySHYJYfgATkbAF+TQ/ANOQQxOQQJOTcBHpJD8Igcgm/JIfjOyOWxzN9zIetAP1h0HSi1/YRFC4uBkStj9h4Xlr1vEdkHFpF6aOTqmHrEhaX+aBGpP1lE6s9Gro2pv3Bhqb9aROpvFpH62PhSOZTiSv8Jvx/BX+MB+DMAAHicrVl5cBzVmX+vX3fPjObsuW+ppzWXRjM6RjNj3a0ZXbZkY1myLVlGPmQbgS8hLhvjWMbGGGPAjrmPxEASSAJBsAsksEkI2aQ2myUhFLUpKhACoVK72U1tnNQuWdC093s9I0u2YTd/rMrWqKe7X3/vfd/3O14jFiUQIu9wV6EwakbtqAsdfxFhBuH8wFzV6lG5CREGMwRPIcwymN2BEGIIYsYRizgty40jnY4fQjxvKiCtVjOENBqjptsnN156G490iNeNXXb74k1jsrFLFgR7LCLV+Ksr3AlbB0k3BhmH3cSasRSNdLCZpogUMjFSKGpr6mDKJ+EwxWBREHPw/5x7WX6wtn1bfzSQaKoTWeEmI+tNZJKVPdloNurVewybLIGoyxn1C4I/6nRFAxblWfKt+TWNpGf+VXalIxywhDrGspnB5ppwtXPbtWJDPJLMReubBYfgKHqcsYAgBGJwozoAO/nJQxm2SGeFtAixD3MhZEROVC2LNswSnId5YsTiDYgQQ4HBCM52C4Jkq+LsCVEKRaJEJCacwDiNRZLCURPWsA/f5Q5op4sf7uVF1134D99RXsevv1Jh18E/txW3KT8SvFxo/seM4JbDEdmNzp9Hx87/ER9E/4IkRNAxhDCB53o/3YysshlhjIYhQAfqjoUZP2QbIlr80bzAYa5nc3cDfLuLPYUnuePIpt4H1w3DzSa4r5oREri80pnyyuNJu5T0eGpFu12s9XiSkp3Te5L0KOnxJkN2eyhJn/QUQnw9rEoIRWTJTRhaWbBYGDF4ioVADAWCMTbibtGRFeKwKjiIXR04hztwKxYkoSmbw3wCh6LY6YDDdKPThUnB6KiocBjwmwa/+9jjhFESroQ34VKq+LPH3D4j/mf8vqve4613krBD98mvyfftDZ75f4jHSa4xMd/FhXTO+XchiJHz58h68lsUh8q/Q9ZXQcbqWIbXMFD7Iaj9GGIJQ1hmCq7V8IxmHLLIDSOOcxV0mOfRMNYyakZ9cu3nX6qlWVdvUNfTgaHSvYkajBrqa5oTzdWhgM/ttFkrtCiO4xXmhBiK1GETWVjr3IWih687sFr0QriRnjARhz3IEJ3Xzzkjy1dvzDVPDiQ67/7oa1uu7FjbkXRZvdqqoVdn1syuSyrdtSvyrYEbvnJVylPTYvGMS7mIrbJrS75l50iGHZi5ripSZTUtW7Uys/X4cPGeXVaxIfiPXKC+KxbJSQKkaxZQ4gR3NwqiejlpggKDNMJXDCLjPOY4aH+MzQUWM4yR6YYzQRQUwrGwqIGMQtaypYRiqG/IL6aVj1NQ95BSXB+zuYyYNQVdZ5U3TH6L4DPhvi85qozKf5o8vuQcd/f831UIeMBiVQ6ZPRX6SkHxm634tN2oJCEiBg2c/xN5nnwACJZC/XKPiwJPHhHMYAIJ4aEdeDyuhSjRsAaS4SoghmGHEcs62O5oBKOaeCQVTQV8dqvZqNOgMA7rzAmsogsviUFAIVryzsolWXGFeI3YlGIY1+j9ezqs7uIMkxqa7pEnCilBb+EbxbEduzM7njnY23nTN/ccuMfKOELyleSDluknro77Nt6xIRmoDui0crQ5bO2+7YeHdjx/ZMXsqYOtk30xWOuTsLAvw3zcaPAlF8/Q2ZQK0gZVBVUHczAXOJZR19onuxA9hlNqfbkunBmTDXDGjdySIyzytkRaUCexUEPQW1BYvEY4ebXNzZg7H92xev+amrnJ7QO3Zslbgm2qd21myx3DxdPM3t0393UW61Xk0APK+aGffSgge01I7Wdc7mP1qbFQTGRtCR1WW7Wcd10p47wGq2D3gHL0RbtVi0WNDldobaZvKbfiEy/anVrll5xG+UjrFL7BPMHMmvQKEoz4faO5eKI44jQwbnOFgo2OMoKR30EcduSXPQYCuIdxngEoMRSQ2pO1IYFYSwVGI7GVYMVGo2FWvaRMnXUFKj4QvBUVHuF9bdD1BGMs/pnRE5fLpnCVOZ8vF8TzZp86597z55h3IR9tqF1uacOYC2CGZfIUZzEiU4iwmADFwYlSx0NlMcOwNA6mu2VZNByq8nkkkQcI5Wn50GaGvuVL1BWJ5koJoUWWaUrxJXx1upinDG6z1FBIRTtq3bH82tG1+Vhq7MjaLV/OxWGBrNXp/myqUOuM59eOrc3Ha0duWT1+bxOpdzo9TmckHYg0VgeCsZbh1u7rRurzmbzR5BN93kRLVSwT9ldG20c7m69alWrLwvx6oH9aYH61qFnO1sI0vNBBS+dHG2np/BbbB8g6BkXkSEBil0yOKbXM0o6hcyJYazaZq+p7GvPbC1K4e3Nby4pG0Wo3pKtWbdjSuO7+vZ0te5+8Ztv9LSSk17sD7vSm42tH75hoCFYHhVKzHH513+7vHBsotEHcofPn2P/gzKBaNspjOoxJC9ZoWyOAwCRvwFqswVrNFIUkQ6GCh9ogQxwmxFzQY40GjeiMjMqKGC3LphtSyZpYdagy4PW4XU67YDEbeRa143aTOcGFIhkBMtVeLh9BLH84RMHuvDBTWuIZYfErihcYP3ntgWmL45E4NNwY/jZ8WDZgs3JuWa034rNqTRWZ5M35mQPKKvgi7LNpdXquKXnAfOt+ZsRu67XjpNmqPI9T9Pds8dttbSarSRipSdHz5UOtDo6RWqdHQIY8AXzmRicH5pKAF3oDKDlAEACEvI8ekYWjsYG5IAUU2rQXEAWzrJHt9pXuLaEKPb8AK+XTchAkHLAdO3Up7pQuGLuAO2L1pbjjdGmgB1Q+0whHtvtdjCF59MrKrNNEPKZ0ZbInV2Mlbzm9p7ZMG823evS+zGBD8X6qru5SXiK/h7m5UATtlg1+H0841okZjpI1nUpAA49fmAqUaakDCzxkXCAQtahGSy8qh3vZNWOyzeNGqCrojngi8CAX0JfWmrBdBJvlphUwRc4gfJeFpmXuohAqdJydGjm+uall96Nbx77QgMmag02pvd3HToud48pLnF+wzQxs7PrCKzfvevWOVW1ZZQ17drBXiXWmX//bTcfXx0o5PAO/CsBqBLllB8UzUxnPKOAhCNNSwrQC0OInM3Bhmf/+AP1rQ1FUK8dVkmBVouMW0geqw2HHqDJgjzqieh2yYRu/wHGLus5WwqALXcwEdj6zr6tr3zM7dz67v6tr/7M7+67pkyT41b+Tfu4kH/QdeeW661850gef118Hn/MPN0wcX7/++ERjY+mzoTQv6FXmBPRqCC2Xe2mvVmKOr8KII3kEAgLzHEgnaFQW0z5FtE0hQWiEErbapCWVVG7MEA5pP6sxHZe23+PX3jxtdjxc6juj8ucctJm33GY3X9Jmsxd1FKjqPRD4du4wxEzgzxDoeuqMWOa/qZaFaMkwxGlSQzaXswQrbdPrMItZK+dLLOSTvLWYT/Pn5ZO8NZ+CCyGfKyCfX4HU0lqflg12zDF+H0tYtdaraa2rz10oYFehXPr8ghoVLznPqxL0Qu2rEtTpceNyrTsdVouWRy7s0i7IT7wUtoU0CM5sTkhhCvVUcrZCuVs7vjQ1fPvmpuZdj9Byn1NWDh/I1O0p3HZK7Ngg2G6gtf4q1PrxVa05JvDJzKGVPfidcrHH1Zq4h+ocmKcDJeUaO1GFDpwwfYaWUQ2MQ3JIQglQhMtUzD1z7fdtBQUTn9u6fWA2y91d/GF+1aKA6e8sNtBnQoMzk9wtoE9zcpNgYWhKOErm5UYxUfZGQ0SFEapsjdyCnHWEw06Qs2khmsLtOL2wOhq6WCYmgGn1fWPS4f1icmTfQGWrj2NqwzWFei/WKOdJp5Fx2vuvHDkyVlehG3Vxzqa1HaOz86/RmEDQcE+St1ESVcmBiEtLqLoG+0xDAGlBjKS7Rky0Uc9ou1TLlA+zpSOIJFq2kQRck+NOu599rsLEae361zmvddDu4b6nt2r19r/hvLajyhsnPRVvaPUcV6F9U++/DZDXXDwV6qqq6pKY6802m7l4MpSv6iow0xb7fEpkzriSLlfKVdwjqtUrK2fJWfIhyqEBNIYekC1Audp6gWE0nTUMRwhUqxeqtbYCa4AyNOD6CeIAt8dVrwDWHw3rSnqc51VB4aH0UgcrokVYO3X5bZ95x5jsXzkIHndocGzlWH9vR5skul0WE0tQDuf0FOScLtFhN4OBVKEOFmdRftEiz+ZSeOF3B4ObUmzpElXEYArwkXLd45+1X5PAKDZVmZk4vFLOBvzZ0ekbpkezbdc+edVVD+9oXDsQr29r67kiM3Er3hOWRya2JBs6gp1bC/kdvdXKb7ZMTm7ZNOlpWE4+9Hu7JN4sD/ZfvyZptiUcUsjC6uwNa7s7b9yYq+mfSPdvC9jyuZqJyvixsf7rh2s//Vep1qPnWY13eVpcFnd7k51M6671Y1dfPZboawrQfJwCbc6omrgS1VCtCoTP0j0IDeg3loxTQKVbAYaCWu18yXg7oPxqYqEqR6Uj6HbCzTZRa4EqF8vkAIZNXSuAV5UeIlK4pFUjCXwKn77+qZ2NgZbRtjvubJl+8mrlE0x6JjsDh25Tim8XtuXFg8d+xYXqxg6trt8w2GHzPXBg5MRkllmntEgd69Pbb5wVW9Y0XrezxBHQm+RnEL+G9gHdLCFDtPwN1FtCoHS3AmkEQeBA10OvSYKYIT9TDr+szHKhBz+9kT3xYGkcG/WqAKVW5JVdFXjBGSwgb61oAWcgSpf7guCXlXtP2/3cL4xWrcZmepv3CXdCU5iKd0v5kFiQmBmzA8Y/eP4ceRrGp/7MrGHo+GV/BkhSfg4zXPZD4M8WvoVjekqlDQdZ9Gdh0SYBrGGVuwBn04K0BIQFnARPdjg3d43VzVg6H1FtGnmreHrP/r4O5hfzqQtWjdlbmn/h/J/AozWAnu+Wu2xQAwRzCCCOsAi6YgrYgGMRt2PBptgpUywQA0bRMKVawazhUC2u1dAGqryEEDSXi/1clrxiMvT3vXl69udnrhh58O3ZQz/ob+NBrsbzW5evu+eq5rapu4Yaryi0BizYalg1MbX1+Y/vu+/jF7ZuWDmiM1Qnqntv+/7+m1872msKJCtNJa8Jmu80rLMT+WS3iWMuSqRALV6IWjxqKW2XJRM/pPV5jzytnHjQ5eY/0po53qx9j/cLJ5Xf2J34KHkQ0vqoo8bhTDiYrWbVU56E6t2Hfof8yCUDXuDOhT0wKD6fp5qxJHJLth010UimKddBcpCsk0Iw4Q0mg2ZPXXdt0GjSBSu9vD7duc8ZC1qd4XQgMbFxfdhvsBhMFdWpZVXdC1qP+wB0WwKte7nGxBParKVCcvIqo5c5QKsBMKUs4JO9qMRLlMnpUrgWT46pe3YJlACWtEWios55QXkTujjq7wXCNC2lzjNTdhdj9rf3rk5uP+Rz9Ixsbjz73NzUltpVrdLclgl5OkX3A7aJubhzz5XZwUbXay9QUp25IdC6rpn+dcNMobUIAhY000aV0xuoZtpI1VIYVrZBTiVB1YEZwbQKy+rUTtuaGUJqlzA4LDnsggk3MA2cN1Gq4z4Y6wkYq56OAL6U6P+XETCqDtltFiOqx/XcorTVUOEuNjqBninGw1osCFwo4jo4ZPjhu6daE8s3Z5TnIisl/Livav6rJgE/0DTcUiW1ramvW91RW6GNSusNy/fcwzVQWbv84MzunPK43lDp3d4sRC34K5mtkzuam9c1+wPpvpqQgzON3zlRT9dDgjn8OyfR9ZDoekR/j6h6tNNd4TwH9hrTzfZx6EUVlWEidjuFNr4qoe4qN6uYLiELqAS4z/Z/3GehVjztsPOqqlS1HE6TphwWSff3bNaHzhR/aveyArPnsTO8ksE/wr/aZHYoT+NRhzBChpQ365uLh9TnngIN+nvQZk6YwTWyzue1gf5U67MkQKlMu9RM8SDh6KZHyWxddJ5aLOOi5aKbUzY3WMzKgEtyS/AUR0wSwGwtkXZlpwWGcanXipyaa3t429rjm9Mtux7evPlwYwUbxe1DB9KpPfnbT82C7PtO33D+luenb3r9zsHlXevDZF3ZZL32wtMwL+g5tgU4xgPzapTrTGWG5OmWucqQasAX9uoRkkS/F652J0VBU9pPWkKMdCeTbmRK0RIlAqksfwlP7Xvu2mx85XSfEDThLU/UeZWfmCXp5m/2714RVn77AhMq/poLpTfdPtKzb3OPVe+zFf8Sxm87bbeFuzc1/xtS1/9OiPNpiNMAzw7KvgV5aiio1V8iMjEmVrO20s68qIalobUtqkTNPr3+sfeOKS34x8fee2z9qy27HpxQzmHzxIO7WpjT9/7p2QkutOmZP5/Z992jPfNsz5HvQb+dhlr9IjxTj1Iy9S6gxxn6xoYbokJYfTQ7hFSTD9/qkV6gP3SHF9iYql9RIwrkdPFl/EslzqzARcSF7lWG7lG674VRwdcAnj8FHt6JwujWkms32MDc+LxENTc+9ZAsHJb3KAKLteVa4mHKHAC1xuOyW1zihi66ZrHWwu7wYq3RXF7Ma7lsGl9sdJ6aa390m2rqdz26ddORtFETVV4cviWTvLag+nry1icf4Xf61y5YnUL7QPX8s9TptGdKTgcwoOr8OVbLHacYUEV9ZKr0hob5KoR3RjYFMdYImCFWuuJlAqhb3L7mDVQq64aRTmcCQw8XD4Ey1qh6Ao2wuOz50n/NHdQG0t27kdLuHSwMxtmm2hocxuGoFJYkwaoXExR7IWbyIfj1anRANgVgCAtEKCyJMHzR80pP0X5GXPHPv+6yaCiBVaPqUiQCEJjabhdbeulS008+nFPqMgmP5LGqvr52X9fefbssjgdixC5sIK/Ny0Re6uwvNv10rgP4L0ycuQsUNPA+oi/MVlL+GYJTuAc8opCwQXUP4F8rIeau+0rclAN83A7ctGRPmCWfuyds///ZEyYBs9ccbx1uyQ3n/Onha/ZcM5xetvPRbft/2pfROEy2ut7JnpYNnWL5VNPk6Ymrn5PZYX9luLIyt7wm15+OxNIrp4fWPzAtX3nFOr0x3hAPdazPtA6mpUjD6htHe45sb+8tQM1ugvm9VuLxTZS3GkFUd8kdnZjl9DAzN1QDoW83F40FX2LkxQ0nBucyydpETajKbsUFpqBZ4PVBGPtZGDtPR+yAEStgRNdfMSJGUKyJmrhYaRNQHuc1S3i+7FJgMaO5rNNVemujcn3mcs53D5/YlqtsWZM++IXuGx4d3XFqR97ZH8gYDFLbxp781rzo7T+0bc1Mf5XYOlRff0VHQg8CYNTYvxcEQP3oLYOdW1ekLaEv7xs/vSOb3njLikpDhcfb15VM9o7WNI11Vu/HUttI47LhZb6L9ABg4AT+GnmM7IVa0yCRbqXCXwwZu6zqBMEC0G4TS8g6QTrnf0D/MzVH8U9ug0tOAFbPAKrqUAxacRGr2SG6DatiNWhC+EKHdBSlqb8oo7QkkJniz/F7ivQyxefme4tvwEAwBjQDeYGLIDONTMeqevsCGZI1pSEFwUMjy4lCU07Dq/pCSDvE89CI77uTugw+dPyT4spZclO05u/tRuNyPPzphtlS3leCL3lc1XNZOW0F4I9B3uuhXSDvHNAvx44vJNt+geccqNsmxWpj9CVDeClcBxnqQ6IpsmhDALpVZBAF9vHN7xx66ONvTYx//Y/3DR7ec2UsbYi5XLnBqb6pr98kFw7O7R45Kn/X6sQnDvX1Uity/8fPb3UlOiJr7BUmY1h09x/7/o0Hfnh7X1TCVXbzVQpfmgPwCNkMnsRPWdlhpm9ASy/AzIsvwOKLL8BsC3ak9AaM8JrS6/4+5b2n7TbtP7E67Td1dtPjyru44et2j/bn2opXtS7bY/i/8Lsmg/KY3qHHTSaLklSwy4hnXBblRZMT/Q/S18lIAAAAeJxjYGRgYGCUitu4Yf2ueH6brwzSHAwg4BV8ZxYDHPxbwGbA2gdksDEwgfgANYMJiQAAAHicY2BkYGBj+McAJK8zQAAjAyqwAAA0rwIcAAB4nGPhY9BmWcjAwcTK0MaaxcDAeI4hh+06w3LmqwwhzIsZGph/M3gznmdgYDFh6GFRZ+BmfsbAwKzI4MacxODKKsygxHSKoRko18t4jWEyiwWDN9M6BiUgOw/MN2HwAuJ+pkIGCdYdDKLMRxgcWKIYJgDNkGCeyyAMlKtlcWFwZp7PwM34n6GHLQWoh48hhvkNgzuQVmbRYLAEqpnAEgEUf8PQzfyCYSLYzFIGBRBmKmbwZl7LYA5UGw/U48P8hyEOyO8C8jey8jD4MpcziAMAcw0uyQAAAKQA4gD6AQUBLwF9AhMCYQLJAskDFwNbA5EEAQRdBOUFUwXHBeEGMwaNBq8GyQc9B3cHwQgdCOUJRQlpCZkJ6QpNCoUKvQsnC00LrwvPDAsMdwzLDQUNNQ2xDgsOgQ6bDwsPOQ+3D9sQBRA1EJcQ2wAAAAEAAAA4AFoABABEAAMAAgBQAF0AbgAAAPAKdQAFAAF4nH2Q3WrCMBiG32orbIMdbicycwMt6k7HwB/EiUoR8XAQbKuBNpFYGd7UznYhO97N7C0GwZOmJDx5vjcfaQA84hseLqPDeWGPvuO4gQCh4yZe0HfsMxM7DvCAT8ctesWk599x944vxx7a+HHcwD1+HTfxhj/HPtres+MAT96r4xb9x9KIrTmcrdrtS6F0ZmwhS2W0yMxJJ9FwUI1wJG2uSrMyhdSzOE1kLuLxpD9dL+biNnK726T2WDXrRd3bApYwENhyPeAMy5/bYY+STkEjo7coIGkUWdNX7kRKEGGIwfULMWLOImeyZGbFWZ3UmPEpU+Yla4I8xoQPPcUaC8xp6rrU1TbsanG83qzHG3XrTvwDhwtYLwAAeJxjYGYAg/8zGQ4xYAEANg4CXgBLuADIUlixAQGOWbkIAAgAYyCwASNEsAMjcLAXRSAgsChgZiCKVViwAiVhsAFFYyNisAIjRLILAQYqsgwGBiqyFAYGKlmyBCgJRVJEsgwIByqxBgFEsSQBiFFYsECIWLEGA0SxJgGIUVi4BACIWLEGAURZWVlZuAH/hbAEjbEFAEQAAAA=) format("woff"); } A.Make an XY scater ploT linked To The following daTa on This sheeT. B. ±he scaterploT reveals an ouTlier. Copy The daTa To a new sheeT or a new area on This sheeT, and remove The ouTlier. You should now have 24 rows of daTa above. Make a new scaterploT from The revised daTa. C. RighT click on The poinTs, Add ±rendline, Display Equa²on on charT, Display R-Squared value on charT D. Read The inTercepT direcTly from The charT equa²on label. ±he eleva²on of The line above The origin wiTh 3 decimal places = E. Read The slope direcTly from The charT equa²on label. ±he slope of The line wiTh 3 decimal places = F. So, when X increases by 1, The change in Y = G. Read R2 direcTly from The charT equa²on label. ±he amounT of The varia²on in Y explained by X in percenT is = var isIE = false; var f1 = [['t1_1',1259],['t2_1',1832],['t3_1',1816],['t4_1',239],['t5_1',1907],['t6_1',1891],['t7_1',434],['t8_1',1875],['t9_1',856],['ta_1',1859],['tb_1',216]]; function load1(){ var timeout = 100; if (navigator.userAgent.match(/iPhone|iPad|iPod|Android/i)) timeout = 500; setTimeout(function() {adjustWordSpacing(f1);},timeout); }

Answer

Get Essay Answer
1,200,000+ Questions
Satisfaction guaranteed
Make an XY scatter plot linked to the following data on this sheet. The scatterplot reveals an outlier. Copy the data to a new sheet or a new area on...
Scatterplot a) Make an XY scatter plot linked to the following data on this sheet. X Y 6.981 12.266 3.982 8.455 2.084 5.951 9.113 14.395 2.280 7.435...